Search results
Results from the WOW.Com Content Network
Given an integer n, choose some integer a coprime to n and calculate a n − 1 modulo n. If the result is different from 1, then n is composite. If it is 1, then n may be prime. If a n −1 (modulo n) is 1 but n is not prime, then n is called a pseudoprime to base a. In practice, if a n −1 (modulo n) is 1, then n is usually prime.
Most primality tests only tell whether their argument is prime or not. Routines that also provide a prime factor of composite arguments (or all of its prime factors) are called factorization algorithms. Prime numbers are also used in computing for checksums, hash tables, and pseudorandom number generators.
If the input n is indeed prime, then the output will always correctly be probably prime. However, if the input n is composite then it is possible for the output to be incorrectly probably prime. The number n is then called an Euler–Jacobi pseudoprime. When n is odd and composite, at least half of all a with gcd(a,n) = 1 are Euler
[1] [2] Every positive integer is composite, prime, or the unit 1, so the composite numbers are exactly the numbers that are not prime and not a unit. [3] [4] E.g., the integer 14 is a composite number because it is the product of the two smaller integers 2 × 7 but the integers 2 and 3 are not because each can only be divided by one and itself.
A Gaussian integer is either the zero, one of the four units (±1, ±i), a Gaussian prime or composite.The article is a table of Gaussian Integers x + iy followed either by an explicit factorization or followed by the label (p) if the integer is a Gaussian prime.
Fermat's little theorem states that if p is prime and a is not divisible by p, then (). If one wants to test whether p is prime, then we can pick random integers a not divisible by p and see whether the congruence holds. If it does not hold for a value of a, then p is composite.
So if it is unknown whether a number n is prime or composite, we can pick a random number a, calculate the Jacobi symbol ( a / n ) and compare it with Euler's formula; if they differ modulo n, then n is composite; if they have the same residue modulo n for many different values of a, then n is "probably prime".
Calculate a n − 1 modulo n. If the result is not 1, then n is composite. If the result is 1, then n is likely to be prime; n is then called a probable prime to base a. A weak probable prime to base a is an integer that is a probable prime to base a, but which is not a strong probable prime to base a (see below).