Search results
Results from the WOW.Com Content Network
243 (two hundred [and] forty-three) is the natural number following 242 and preceding 244. Additionally, 243 is: the only 3-digit number that is a fifth power (3 5). a perfect totient number. [1] the sum of five consecutive prime numbers (41 + 43 + 47 + 53 + 59). an 82-gonal number.
In number theory, a perfect totient number is an integer that is equal to the sum of its iterated totients.That is, one applies the totient function to a number n, apply it again to the resulting totient, and so on, until the number 1 is reached, and adds together the resulting sequence of numbers; if the sum equals n, then n is a perfect totient number.
A totient number is a value of Euler's totient function: that is, an m for which there is at least one n for which φ(n) = m. The valency or multiplicity of a totient number m is the number of solutions to this equation. [40] A nontotient is a natural number which is not a totient number. Every odd integer exceeding 1 is trivially a nontotient.
If a is any number coprime to n then a is in one of these residue classes, and its powers a, a 2, ... , a k modulo n form a subgroup of the group of residue classes, with a k ≡ 1 (mod n). Lagrange's theorem says k must divide φ ( n ) , i.e. there is an integer M such that kM = φ ( n ) .
Thus, a highly totient number is a number that has more ways of being expressed as a product of this form than does any smaller number. The concept is somewhat analogous to that of highly composite numbers , and in the same way that 1 is the only odd highly composite number, it is also the only odd highly totient number (indeed, the only odd ...
In mathematics, specifically number theory, a sparsely totient number is a natural number, n, such that for all m > n, > ()where is Euler's totient function.The first few sparsely totient numbers are:
The summatory of reciprocal totient function is defined as ():= = ()Edmund Landau showed in 1900 that this function has the asymptotic behavior (+ ) + + ()where γ is the Euler–Mascheroni constant,
The cototient of is defined as (), i.e. the number of positive integers less than or equal to that have at least one prime factor in common with .For example, the cototient of 6 is 4 since these four positive integers have a prime factor in common with 6: 2, 3, 4, 6.