enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. k-means++ - Wikipedia

    en.wikipedia.org/wiki/K-means++

    In data mining, k-means++ [1] [2] is an algorithm for choosing the initial values (or "seeds") for the k-means clustering algorithm. It was proposed in 2007 by David Arthur and Sergei Vassilvitskii, as an approximation algorithm for the NP-hard k-means problem—a way of avoiding the sometimes poor clusterings found by the standard k-means algorithm.

  3. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster.

  4. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  5. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Variations of k-means often include such optimizations as choosing the best of multiple runs, but also restricting the centroids to members of the data set (k-medoids), choosing medians (k-medians clustering), choosing the initial centers less randomly (k-means++) or allowing a fuzzy cluster assignment (fuzzy c-means). Most k-means-type ...

  6. Help:Cheatsheet - Wikipedia

    en.wikipedia.org/wiki/Help:Cheatsheet

    For including parser functions, variables and behavior switches, see Help:Magic words; For a guide to displaying mathematical equations and formulas, see Help:Displaying a formula; For a guide to editing, see Wikipedia:Contributing to Wikipedia; For an overview of commonly used style guidelines, see Wikipedia:Simplified Manual of Style

  7. Steak has many nutrients, but here's why you should avoid ...

    www.aol.com/steak-many-nutrients-heres-why...

    Extra rare is another temperature category and means a steak is only cooked to 115 degrees - which isn't as worrisome as eating raw beef, but is still far from being considered safe to eat.

  8. very few teams have won it all

    images.huffingtonpost.com/2010-03-15-cheatsheet...

    This cheat sheet is the aftermath of hours upon hours of research on all of the teams in this year’s tournament field. I’ve listed each teams’ win and loss record, their against the spread totals, and their record in the last ten games. Also included are the leading scorers

  9. Fuzzy clustering - Wikipedia

    en.wikipedia.org/wiki/Fuzzy_clustering

    Fuzzy clustering (also referred to as soft clustering or soft k-means) is a form of clustering in which each data point can belong to more than one cluster.. Clustering or cluster analysis involves assigning data points to clusters such that items in the same cluster are as similar as possible, while items belonging to different clusters are as dissimilar as possible.