enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Each file represents a single experiment and contains a single anomaly. The dataset represents a multivariate time series collected from the sensors installed on the testbed. There are two markups for Outlier detection (point anomalies) and Changepoint detection (collective anomalies) problems 30+ files (v0.9) CSV Anomaly detection

  3. Anomaly detection - Wikipedia

    en.wikipedia.org/wiki/Anomaly_detection

    Three broad categories of anomaly detection techniques exist. [1] Supervised anomaly detection techniques require a data set that has been labeled as "normal" and "abnormal" and involves training a classifier. However, this approach is rarely used in anomaly detection due to the general unavailability of labelled data and the inherent ...

  4. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    RAWPED is a dataset for detection of pedestrians in the context of railways. The dataset is labeled box-wise. 26000 Images Object recognition and classification 2020 [70] [71] Tugce Toprak, Burak Belenlioglu, Burak Aydın, Cuneyt Guzelis, M. Alper Selver OSDaR23 OSDaR23 is a multi-sensory dataset for detection of objects in the context of railways.

  5. Caffe (software) - Wikipedia

    en.wikipedia.org/wiki/Caffe_(software)

    Download QR code; Print/export ... Anomaly detection; Data cleaning; AutoML; ... Yahoo! has also integrated Caffe with Apache Spark to create CaffeOnSpark, ...

  6. Anomaly Detection at Multiple Scales - Wikipedia

    en.wikipedia.org/wiki/Anomaly_Detection_at...

    Download QR code; Print/export ... Anomaly Detection at Multiple Scales; Establishment: 2011: ... Using multiple datasets from Wikipedia, ...

  7. Small object detection - Wikipedia

    en.wikipedia.org/wiki/Small_object_detection

    Small object detection is a particular case of object detection where various techniques are employed to detect small objects in digital images and videos. "Small objects" are objects having a small pixel footprint in the input image. In areas such as aerial imagery, state-of-the-art object detection techniques under performed because of small ...

  8. Isolation forest - Wikipedia

    en.wikipedia.org/wiki/Isolation_forest

    The scatter plot uses Credit Card Fraud Detection dataset [7] and represents the anomalies (transactions) pinpointed by the Isolation Forest algorithm in a two-dimensional manner using two specific dataset features. V10 along the x axis and V20 along the y axis are selected for this purpose due to their high kurtosis values signifying extreme ...

  9. Local outlier factor - Wikipedia

    en.wikipedia.org/wiki/Local_outlier_factor

    In anomaly detection, the local outlier factor (LOF) is an algorithm proposed by Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng and Jörg Sander in 2000 for finding anomalous data points by measuring the local deviation of a given data point with respect to its neighbours.