Search results
Results from the WOW.Com Content Network
In physics and mechanics, torque is the rotational analogue of linear force. [1] It is also referred to as the moment of force (also abbreviated to moment). The symbol for torque is typically , the lowercase Greek letter tau. When being referred to as moment of force, it is commonly denoted by M.
Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].
In 1820, the French engineer A. Duleau derived analytically that the torsion constant of a beam is identical to the second moment of area normal to the section J zz, which has an exact analytic equation, by assuming that a plane section before twisting remains planar after twisting, and a diameter remains a straight line. Unfortunately, that ...
In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. They are named in honour of Leonhard Euler. Their general vector form is
Since 1 N·m = 1 J, and 1 A = 1 C/s, then 1 N·m/A = 1 J·s/C = 1 V·s (same units as back EMF constant). The relationship between and is not intuitive, to the point that many people simply assert that torque and are not related at all. An analogy with a hypothetical linear motor can help to convince that it is true.
The amount of this reduction from the ideal to the actual mechanical advantage (AMA) is defined by a factor called efficiency, a quantity which is determined by experimentation. As an example, using a block and tackle with six rope sections and a 600 lb load, the operator of an ideal system would be required to pull the rope six feet and exert ...
For a simple pendulum, this definition yields a formula for the moment of inertia I in terms of the mass m of the pendulum and its distance r from the pivot point as, =. Thus, the moment of inertia of the pendulum depends on both the mass m of a body and its geometry, or shape, as defined by the distance r to the axis of rotation.
The term tractive effort is often qualified as starting tractive effort, continuous tractive effort and maximum tractive effort.These terms apply to different operating conditions, but are related by common mechanical factors: input torque to the driving wheels, the wheel diameter, coefficient of friction (μ) between the driving wheels and supporting surface, and the weight applied to the ...