Search results
Results from the WOW.Com Content Network
In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the ...
Normality of the individual data values is not required if these conditions are met. By the central limit theorem, sample means of moderately large samples are often well-approximated by a normal distribution even if the data are not normally distributed. However, the sample size required for the sample means to converge to normality depends on ...
The central limit theorem can provide more detailed information about the behavior of than the law of large numbers. For example, we can approximately find a tail probability of M N {\displaystyle M_{N}} – the probability that M N {\displaystyle M_{N}} is greater than some value x {\displaystyle x} – for a fixed value of N {\displaystyle N} .
In probability theory, Lindeberg's condition is a sufficient condition (and under certain conditions also a necessary condition) for the central limit theorem (CLT) to hold for a sequence of independent random variables.
Two major results in probability theory describing such behaviour are the law of large numbers and the central limit theorem. As a mathematical foundation for statistics , probability theory is essential to many human activities that involve quantitative analysis of data. [ 1 ]
Animated examples of the CLT; General Dynamic SOCR CLT Activity; Interactive Simulation of the Central Limit Theorem for Windows; The SOCR CLT activity provides hands-on demonstration of the theory and applications of this limit theorem. A music video demonstrating the central limit theorem with a Galton board by Carl McTague
Central limit theorem. Illustration of the central limit theorem; Concrete illustration of the central limit theorem; Berry–Esséen theorem; Berry–Esséen theorem; De Moivre–Laplace theorem; Lyapunov's central limit theorem; Misconceptions about the normal distribution; Martingale central limit theorem; Infinite divisibility (probability)
The central limit theorem gives only an asymptotic distribution. As an approximation for a finite number of observations, it provides a reasonable approximation only when close to the peak of the normal distribution; it requires a very large number of observations to stretch into the tails.