enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lorenz system - Wikipedia

    en.wikipedia.org/wiki/Lorenz_system

    The Lorenz attractor is difficult to analyze, but the action of the differential equation on the attractor is described by a fairly simple geometric model. [24] Proving that this is indeed the case is the fourteenth problem on the list of Smale's problems .

  3. Butterfly effect - Wikipedia

    en.wikipedia.org/wiki/Butterfly_effect

    A plot of Lorenz' strange attractor for values ρ=28, σ = 10, β = 8/3. The butterfly effect or sensitive dependence on initial conditions is the property of a dynamical system that, starting from any of various arbitrarily close alternative initial conditions on the attractor, the iterated points will become arbitrarily spread out from each other.

  4. Chaos theory - Wikipedia

    en.wikipedia.org/wiki/Chaos_theory

    Lorenz equations used to generate plots for the y variable. The initial conditions for x and z were kept the same but those for y were changed between 1.001, 1.0001 and 1.00001. The values for , and were 45.91, 16 and 4 respectively. As can be seen from the graph, even the slightest difference in initial values causes significant changes after ...

  5. List of chaotic maps - Wikipedia

    en.wikipedia.org/wiki/List_of_chaotic_maps

    Burke-Shaw chaotic attractor [8] continuous: real: 3: 2: Chen chaotic attractor [9] continuous: real: 3: 3: Not topologically conjugate to the Lorenz attractor. Chen-Celikovsky system [10] continuous: real: 3 "Generalized Lorenz canonical form of chaotic systems" Chen-LU system [11] continuous: real: 3: 3: Interpolates between Lorenz-like and ...

  6. Dynamical system - Wikipedia

    en.wikipedia.org/wiki/Dynamical_system

    The Lorenz attractor arises in the study of the Lorenz oscillator, a dynamical system.. In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space, such as in a parametric curve.

  7. Portal:Mathematics/Selected picture/3 - Wikipedia

    en.wikipedia.org/wiki/Portal:Mathematics/...

    The Lorenz attractor is an iconic example of a strange attractor in chaos theory.This three-dimensional fractal structure, resembling a butterfly or figure eight, reflects the long-term behavior of solutions to the Lorenz system, a set of three differential equations used by mathematician and meteorologist Edward N. Lorenz as a simple description of fluid circulation in a shallow layer (of ...

  8. Lorenz 96 model - Wikipedia

    en.wikipedia.org/wiki/Lorenz_96_model

    The Lorenz 96 model is a dynamical system formulated by Edward Lorenz in 1996. [1] ... It is commonly used as a model problem in data assimilation. [2] Python simulation

  9. Eden's conjecture - Wikipedia

    en.wikipedia.org/wiki/Eden's_conjecture

    For local attractors, a conjecture on the Lyapunov dimension of self-excited attractor, refined by N. Kuznetsov, [7] [8] is stated that for a typical system, the Lyapunov dimension of a self-excited attractor does not exceed the Lyapunov dimension of one of the unstable equilibria, the unstable manifold of which intersects with the basin of attraction and visualizes the attractor.