Search results
Results from the WOW.Com Content Network
The MATLAB/DIDO toolbox does not require a "guess" to run the algorithm. This and other distinguishing features have made DIDO a popular tool to solve optimal control problems. [4] [7] [15] The MATLAB optimal control toolbox has been used to solve problems in aerospace, [11] robotics [1] and search theory. [2]
In numerical linear algebra, the alternating-direction implicit (ADI) method is an iterative method used to solve Sylvester matrix equations.It is a popular method for solving the large matrix equations that arise in systems theory and control, [1] and can be formulated to construct solutions in a memory-efficient, factored form.
Supports global optimization, integer programming, all types of least squares, linear, quadratic and unconstrained programming for MATLAB. TOMLAB supports solvers like CPLEX, SNOPT and KNITRO. Wolfram Mathematica: Able to solve QCQP type of problems using functions like Minimize.
GPOPS-II [3] is designed to solve multiple-phase optimal control problems of the following mathematical form (where is the number of phases): = ((), …, ()) subject to the dynamic constraints
Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions. Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constraints on the variables. Quadratic programming is a type of nonlinear programming.
The artificial landscapes presented herein for single-objective optimization problems are taken from Bäck, [1] Haupt et al. [2] and from Rody Oldenhuis software. [3] Given the number of problems (55 in total), just a few are presented here. The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
These equations describe boundary-value problems, in which the solution-function's values are specified on boundary of a domain; the problem is to compute a solution also on its interior. Relaxation methods are used to solve the linear equations resulting from a discretization of the differential equation, for example by finite differences. [2 ...