Search results
Results from the WOW.Com Content Network
The power rule for differentiation was derived by Isaac Newton and Gottfried Wilhelm Leibniz, each independently, for rational power functions in the mid 17th century, who both then used it to derive the power rule for integrals as the inverse operation. This mirrors the conventional way the related theorems are presented in modern basic ...
The antiderivative of − 1 / x 2 can be found with the power rule and is 1 / x . Alternatively, one may choose u and v such that the product u′ (∫v dx) simplifies due to cancellation. For example, suppose one wishes to integrate:
The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.
If the function f does not have any continuous antiderivative which takes the value zero at the zeros of f (this is the case for the sine and the cosine functions), then sgn(f(x)) ∫ f(x) dx is an antiderivative of f on every interval on which f is not zero, but may be discontinuous at the points where f(x) = 0.
Leibniz integral rule; Definitions; Antiderivative; Integral Riemann integral; ... The most general power rule is the functional power rule: ...
The following is a list of integrals (antiderivative functions) of trigonometric functions. For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antiderivative functions, see Lists of integrals.
The following is a list of integrals (antiderivative functions) of logarithmic functions. For a complete list of integral functions, see list of integrals. Note: x > 0 is assumed throughout this article, and the constant of integration is omitted for simplicity.
This is known as the power rule. For example, d d x ( 5 x 4 ) = 5 ( 4 ) x 3 = 20 x 3 {\displaystyle {\frac {d}{dx}}(5x^{4})=5(4)x^{3}=20x^{3}} . However, many other functions cannot be differentiated as easily as polynomial functions , meaning that sometimes further techniques are needed to find the derivative of a function.