Search results
Results from the WOW.Com Content Network
SAE J1269 and SAE J2452 performed on new tires. SAE J2452 is a standard defined by the Society of Automotive Engineers [1] to measure the rolling resistance of tires. [2] Where the older standard, SAE J1269, produces measurements of rolling resistance under steady-state (i.e. thermally equilibrated) operating conditions, SAE J2452 produces measurements during a transient history of speed that ...
Rolling resistance, sometimes called rolling friction or rolling drag, is the force resisting the motion when a body (such as a ball, tire, or wheel) rolls on a surface. It is mainly caused by non-elastic effects; that is, not all the energy needed for deformation (or movement) of the wheel, roadbed, etc., is recovered when the pressure is removed.
The rolling resistance coefficient (RRC) indicates the amount of force required to overcome the hysteresis of the material as the tire rolls. Tire pressure, vehicle weight and velocity all play a role in how much force is lost to rolling resistance. The basic model equation for SAE J2452 is: Rolling Resistance (N / lbs) = (+ +) where: is the ...
SAE J1269 is a standard test defined by the Society of Automotive Engineers [1] to measure the rolling resistance of tires under conditions of thermal equilibrium. [2] [3] SAE J2452 is an alternative procedure for measuring rolling resistance under conditions similar to a vehicle coastdown event, where the tire is in a roughly isothermal condition (but not thermal equilibrium).
Rolling resistance is the force that resists the rolling of a wheel or other circular object along a surface caused by deformations in the object or surface. Generally the force of rolling resistance is less than that associated with kinetic friction. [74] Typical values for the coefficient of rolling resistance are 0.001. [75]
[1] [2] Informally, it is the sum of the loads resulting from aerodynamic drag, acceleration, rolling resistance, and hill climbing, all divided by the mass of the vehicle. [1] Conventionally, it is reported in kilowatts per tonne , [ 1 ] the instantaneous power demand of the vehicle divided by its mass. [ 2 ]
Астахов proposed the use of a formula which when plotted [15] is in substantial disagreement with the experimental results curves previously mentioned. His formula for curve resistance (in kgf/tonne) is the sum of two terms, the first term being a conventional k/R term (R is the curve radius in meters) with k=200
Main page; Contents; Current events; Random article; About Wikipedia; Contact us