Ad
related to: magnetic field of earth strength definition physics equation worksheeteducation.com has been visited by 100K+ users in the past month
- Activities & Crafts
Stay creative & active with indoor
& outdoor activities for kids.
- Worksheet Generator
Use our worksheet generator to make
your own personalized puzzles.
- Education.com Blog
See what's new on Education.com,
explore classroom ideas, & more.
- Guided Lessons
Learn new concepts step-by-step
with colorful guided lessons.
- Activities & Crafts
Search results
Results from the WOW.Com Content Network
The Earth's magnetic field strength was measured by Carl Friedrich Gauss in 1832 [69] and has been repeatedly measured since then, showing a relative decay of about 10% over the last 150 years. [70] The Magsat satellite and later satellites have used 3-axis vector magnetometers to probe the 3-D structure of the Earth's magnetic field.
The dipole model of the Earth's magnetic field is a first order approximation of the rather complex true Earth's magnetic field. Due to effects of the interplanetary magnetic field (IMF), and the solar wind, the dipole model is particularly inaccurate at high L-shells (e.g., above L=3), but may be a good approximation for lower L-shells. For ...
Magnetic field lines form in concentric circles around a cylindrical current-carrying conductor, such as a length of wire. The direction of such a magnetic field can be determined by using the "right-hand grip rule" (see figure at right). The strength of the magnetic field decreases with distance from the wire.
In physics, magnetic pressure is an energy density associated with a magnetic field. In SI units, the energy density of a magnetic field with strength can be expressed as = where is the vacuum permeability. Any magnetic field has an associated magnetic pressure contained by the boundary conditions on the field.
Assuming the external magnetic field is uniform and shares a common axis with the paramagnet, the extensive parameter characterizing the magnetic state is , the magnetic dipole moment of the system. The fundamental thermodynamic relation describing the system will then be of the form U = U ( S , V , I , N ) {\displaystyle U=U(S,V,I,N)} .
In this experiment, a static magnetic field runs through a long magnetic wire (e.g., an iron wire magnetized longitudinally). Outside of this wire the magnetic induction is zero, in contrast to the vector potential, which essentially depends on the magnetic flux through the cross-section of the wire and does not vanish outside.
The magnetic field of a magnetic dipole has an inverse cubic dependence in distance, so its order of magnitude at the earth surface can be approximated by multiplying the above result with (R outer core ⁄ R Earth) 3 = (2890 ⁄ 6370) 3 = 0.093 , giving 2.5×10 −5 Tesla, not far from the measured value of 3×10 −5 Tesla at the equator.
Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m 2]. [1] One tesla is equal to 10 4 gauss. Magnetic field drops off as the inverse cube of the distance ( 1 / distance 3 ) from a dipole source. Energy required to produce laboratory magnetic fields increases with the square of magnetic field. [2]
Ad
related to: magnetic field of earth strength definition physics equation worksheeteducation.com has been visited by 100K+ users in the past month