enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Persistence of a number - Wikipedia

    en.wikipedia.org/wiki/Persistence_of_a_number

    The additive persistence of a number is smaller than or equal to the number itself, with equality only when the number is zero. For base b {\displaystyle b} and natural numbers k {\displaystyle k} and n > 9 {\displaystyle n>9} the numbers n {\displaystyle n} and n ⋅ b k {\displaystyle n\cdot b^{k}} have the same additive persistence.

  3. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    In other words, it is the number of integers k in the range 1 ≤ k ≤ n for which the greatest common divisor gcd(n, k) is equal to 1. [2] [3] The integers k of this form are sometimes referred to as totatives of n. For example, the totatives of n = 9 are the six numbers 1, 2, 4, 5, 7 and 8.

  4. Integer partition - Wikipedia

    en.wikipedia.org/wiki/Integer_partition

    By taking conjugates, the number p k (n) of partitions of n into exactly k parts is equal to the number of partitions of n in which the largest part has size k. The function p k (n) satisfies the recurrence p k (n) = p k (n − k) + p k−1 (n − 1) with initial values p 0 (0) = 1 and p k (n) = 0 if n ≤ 0 or k ≤ 0 and n and k are not both ...

  5. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    every bridgeless graph has a nowhere-zero 5-flow [130] every Petersen-minor-free bridgeless graph has a nowhere-zero 4-flow [131] Woodall's conjecture that the minimum number of edges in a dicut of a directed graph is equal to the maximum number of disjoint dijoins

  6. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    This means that 1 is a root of multiplicity 2, and −4 is a simple root (of multiplicity 1). The multiplicity of a root is the number of occurrences of this root in the complete factorization of the polynomial, by means of the fundamental theorem of algebra.

  7. Rouché's theorem - Wikipedia

    en.wikipedia.org/wiki/Rouché's_theorem

    Since has zeros inside the disk | | < (because >), it follows from Rouché's theorem that also has the same number of zeros inside the disk. One advantage of this proof over the others is that it shows not only that a polynomial must have a zero but the number of its zeros is equal to its degree (counting, as usual, multiplicity).

  8. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    Theorem — The number of strictly positive roots (counting multiplicity) of is equal to the number of sign changes in the coefficients of , minus a nonnegative even number. If b 0 > 0 {\displaystyle b_{0}>0} , then we can divide the polynomial by x b 0 {\displaystyle x^{b_{0}}} , which would not change its number of strictly positive roots.

  9. Singly and doubly even - Wikipedia

    en.wikipedia.org/wiki/Singly_and_doubly_even

    This is equivalent to the multiplicity of 2 in the prime factorization. A singly even number can be divided by 2 only once; it is even but its quotient by 2 is odd. A doubly even number is an integer that is divisible more than once by 2; it is even and its quotient by 2 is also even.