enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Persistence of a number - Wikipedia

    en.wikipedia.org/wiki/Persistence_of_a_number

    The additive persistence of a number is smaller than or equal to the number itself, with equality only when the number is zero. For base b {\displaystyle b} and natural numbers k {\displaystyle k} and n > 9 {\displaystyle n>9} the numbers n {\displaystyle n} and n ⋅ b k {\displaystyle n\cdot b^{k}} have the same additive persistence.

  3. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    60 = 2 × 2 × 3 × 5, the multiplicity of the prime factor 2 is 2, while the multiplicity of each of the prime factors 3 and 5 is 1. Thus, 60 has four prime factors allowing for multiplicities, but only three distinct prime factors.

  4. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    A square has even multiplicity for all prime factors (it is of the form a 2 for some a). The first: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144 (sequence A000290 in the OEIS ). A cube has all multiplicities divisible by 3 (it is of the form a 3 for some a ).

  5. Integer partition - Wikipedia

    en.wikipedia.org/wiki/Integer_partition

    8; 7 + 1; 6 + 2; 5 + 3; 5 + 2 + 1; 4 + 3 + 1; This is a general property. For each positive number, the number of partitions with odd parts equals the number of partitions with distinct parts, denoted by q(n). [8] [9] This result was proved by Leonhard Euler in 1748 [10] and later was generalized as Glaisher's theorem.

  6. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. [3]

  7. Bézout's theorem - Wikipedia

    en.wikipedia.org/wiki/Bézout's_theorem

    The concept of multiplicity is fundamental for Bézout's theorem, as it allows having an equality instead of a much weaker inequality. Intuitively, the multiplicity of a common zero of several polynomials is the number of zeros into which the common zero can split when the coefficients are slightly changed.

  8. Rouché's theorem - Wikipedia

    en.wikipedia.org/wiki/Rouché's_theorem

    Since has zeros inside the disk | | < (because >), it follows from Rouché's theorem that also has the same number of zeros inside the disk. One advantage of this proof over the others is that it shows not only that a polynomial must have a zero but the number of its zeros is equal to its degree (counting, as usual, multiplicity).

  9. p-adic valuation - Wikipedia

    en.wikipedia.org/wiki/P-adic_valuation

    In number theory, the p-adic valuation or p-adic order of an integer n is the exponent of the highest power of the prime number p that divides n.It is denoted ().Equivalently, () is the exponent to which appears in the prime factorization of .