enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polygonal number - Wikipedia

    en.wikipedia.org/wiki/Polygonal_number

    In mathematics, a polygonal number is a number that counts dots arranged in the shape of a regular polygon [1]: 2-3 . These are one type of 2-dimensional figurate numbers . Polygonal numbers were first studied during the 6th century BC by the Ancient Greeks, who investigated and discussed properties of oblong , triangular , and square numbers ...

  3. Figurate number - Wikipedia

    en.wikipedia.org/wiki/Figurate_number

    Figurate numbers were a concern of the Pythagorean worldview. It was well understood that some numbers could have many figurations, e.g. 36 is a both a square and a triangle and also various rectangles. The modern study of figurate numbers goes back to Pierre de Fermat, specifically the Fermat polygonal number theorem.

  4. Centered polygonal number - Wikipedia

    en.wikipedia.org/wiki/Centered_polygonal_number

    The n-th centered k-gonal number is equal to the n-th regular k-gonal number plus (n-1) 2. Just as is the case with regular polygonal numbers, the first centered k-gonal number is 1. Thus, for any k, 1 is both k-gonal and centered k-gonal. The next number to be both k-gonal and centered k-gonal can be found using the formula:

  5. List of polygons - Wikipedia

    en.wikipedia.org/wiki/List_of_polygons

    Individual polygons are named (and sometimes classified) according to the number of sides, combining a Greek-derived numerical prefix with the suffix -gon, e.g. pentagon, dodecagon. The triangle, quadrilateral and nonagon are exceptions, although the regular forms trigon, tetragon, and enneagon are sometimes encountered as well.

  6. Triangular number - Wikipedia

    en.wikipedia.org/wiki/Triangular_number

    Every other triangular number is a hexagonal number. Knowing the triangular numbers, one can reckon any centered polygonal number; the n th centered k-gonal number is obtained by the formula = + where T is a triangular number. The positive difference of two triangular numbers is a trapezoidal number.

  7. Fermat polygonal number theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat_polygonal_number...

    In additive number theory, the Fermat polygonal number theorem states that every positive integer is a sum of at most n n-gonal numbers.That is, every positive integer can be written as the sum of three or fewer triangular numbers, and as the sum of four or fewer square numbers, and as the sum of five or fewer pentagonal numbers, and so on.

  8. The world’s busiest flight routes for 2024 revealed - AOL

    www.aol.com/news/world-busiest-flight-routes...

    Home & Garden. Medicare. News

  9. Pyramidal number - Wikipedia

    en.wikipedia.org/wiki/Pyramidal_number

    Geometric representation of the square pyramidal number 1 + 4 + 9 + 16 = 30. A pyramidal number is the number of points in a pyramid with a polygonal base and triangular sides. [1] The term often refers to square pyramidal numbers, which have a square base with four sides, but it can also refer to a pyramid with any number of sides. [2]