enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Incircle and excircles - Wikipedia

    en.wikipedia.org/wiki/Incircle_and_excircles

    In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter .

  3. Mixtilinear incircles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Mixtilinear_incircles_of_a...

    In plane geometry, a mixtilinear incircle of a triangle is a circle which is tangent to two of its sides and internally tangent to its circumcircle. The mixtilinear incircle of a triangle tangent to the two sides containing vertex A {\displaystyle A} is called the A {\displaystyle A} -mixtilinear incircle.

  4. Tangential quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Tangential_quadrilateral

    All triangles can have an incircle, but not all quadrilaterals do. An example of a quadrilateral that cannot be tangential is a non-square rectangle. The section characterizations below states what necessary and sufficient conditions a quadrilateral must satisfy to be able to have an incircle.

  5. Inellipse - Wikipedia

    en.wikipedia.org/wiki/Inellipse

    Example of an inellipse. In triangle geometry, an inellipse is an ellipse that touches the three sides of a triangle.The simplest example is the incircle.Further important inellipses are the Steiner inellipse, which touches the triangle at the midpoints of its sides, the Mandart inellipse and Brocard inellipse (see examples section).

  6. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    More formulas of this nature can be given, as explained by Ramanujan's theory of elliptic functions to alternative bases. Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function τ {\displaystyle \tau } and the Fourier coefficients j {\displaystyle \mathrm {j} } of the J-invariant ...

  7. Tangential trapezoid - Wikipedia

    en.wikipedia.org/wiki/Tangential_trapezoid

    The formula for the area of a trapezoid can be simplified using Pitot's theorem to get a formula for the area of a tangential trapezoid. If the bases have lengths a, b, and any one of the other two sides has length c, then the area K is given by the formula [2] (This formula can be used only in cases where the bases are parallel.)

  8. Tangential polygon - Wikipedia

    en.wikipedia.org/wiki/Tangential_polygon

    A convex polygon has an incircle if and only if all of its internal angle bisectors are concurrent.This common point is the incenter (the center of the incircle). [1]There exists a tangential polygon of n sequential sides a 1, ..., a n if and only if the system of equations

  9. Bicentric quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Bicentric_quadrilateral

    It can also be derived directly from the trigonometric formula for the area of a tangential quadrilateral. Note that the converse does not hold: Some quadrilaterals that are not bicentric also have area =. [12] One example of such a quadrilateral is a non-square rectangle.