Search results
Results from the WOW.Com Content Network
An example of multiphase flow on a smaller scale would be within porous structures. Pore-structure modelling enables the use Darcy's law to calculate the volumetric flow rate through porous media such as groundwater flow through rock. [12]
Morris Muskat et al. [1] [2] developed the governing equations for multiphase flow (one vector equation for each fluid phase) in porous media as a generalisation of Darcy's equation (or Darcy's law) for water flow in porous media. The porous media are usually sedimentary rocks such as clastic rocks (mostly sandstone) or carbonate rocks.
In fluid mechanics, fluid flow through porous media is the manner in which fluids behave when flowing through a porous medium, for example sponge or wood, or when filtering water using sand or another porous material. As commonly observed, some fluid flows through the media while some mass of the fluid is stored in the pores present in the media.
Darcy's law is an equation that describes the flow of a fluid through a porous medium and through a Hele-Shaw cell.The law was formulated by Henry Darcy based on results of experiments [1] on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences.
In 1937 Muskat published The Flow of Homogeneous Fluids Through Porous Media. In this book Muskat focused on flow of single-phase fluid in a porous medium, and what type of differential equation can be used to model this flow behavior. Large emphasize is put on discussing results of experimental analogues such as heat flow and electric current.
Superficial velocity (or superficial flow velocity), in engineering of multiphase flows and flows in porous media, is a hypothetical (artificial) flow velocity calculated as if the given phase or fluid were the only one flowing or present in a given cross sectional area. Other phases, particles, the skeleton of the porous medium, etc. present ...
In multiphase flow in porous media, the relative permeability of a phase is a dimensionless measure of the effective permeability of that phase. It is the ratio of the effective permeability of that phase to the absolute permeability. It can be viewed as an adaptation of Darcy's law to multiphase flow.
Flow through the pores in an oil reservoir has capillary number values in the order of 10 −6, whereas flow of oil through an oil well drill pipe has a capillary number in the order of unity. [ 4 ] The capillary number plays a role in the dynamics of capillary flow ; in particular, it governs the dynamic contact angle of a flowing droplet at ...