enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Levenshtein distance - Wikipedia

    en.wikipedia.org/wiki/Levenshtein_distance

    In information theory, linguistics, and computer science, the Levenshtein distance is a string metric for measuring the difference between two sequences. The Levenshtein distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other.

  3. String metric - Wikipedia

    en.wikipedia.org/wiki/String_metric

    The most widely known string metric is a rudimentary one called the Levenshtein distance (also known as edit distance). [2] It operates between two input strings, returning a number equivalent to the number of substitutions and deletions needed in order to transform one input string into another.

  4. Damerau–Levenshtein distance - Wikipedia

    en.wikipedia.org/wiki/Damerau–Levenshtein_distance

    The difference between the two algorithms consists in that the optimal string alignment algorithm computes the number of edit operations needed to make the strings equal under the condition that no substring is edited more than once, whereas the second one presents no such restriction. Take for example the edit distance between CA and ABC.

  5. Approximate string matching - Wikipedia

    en.wikipedia.org/wiki/Approximate_string_matching

    Computing E(m, j) is very similar to computing the edit distance between two strings. In fact, we can use the Levenshtein distance computing algorithm for E ( m , j ), the only difference being that we must initialize the first row with zeros, and save the path of computation, that is, whether we used E ( i − 1, j ), E( i , j − 1) or E ( i ...

  6. Edit distance - Wikipedia

    en.wikipedia.org/wiki/Edit_distance

    In bioinformatics, it can be used to quantify the similarity of DNA sequences, which can be viewed as strings of the letters A, C, G and T. Different definitions of an edit distance use different sets of like operations. Levenshtein distance operations are the removal, insertion, or substitution of a character in the string.

  7. Normalized compression distance - Wikipedia

    en.wikipedia.org/wiki/Normalized_compression...

    For example, if two strings of length 1,000,000 differ by 1000 bits, then we consider that those strings are relatively more similar than two strings of 1000 bits that differ by 1000 bits. Hence we need to normalize to obtain a similarity metric. This way one obtains the normalized information distance (NID),

  8. Similarity measure - Wikipedia

    en.wikipedia.org/wiki/Similarity_measure

    In statistics and related fields, a similarity measure or similarity function or similarity metric is a real-valued function that quantifies the similarity between two objects. Although no single definition of a similarity exists, usually such measures are in some sense the inverse of distance metrics : they take on large values for similar ...

  9. Jaro–Winkler distance - Wikipedia

    en.wikipedia.org/wiki/Jaro–Winkler_distance

    The higher the Jaro–Winkler distance for two strings is, the less similar the strings are. The score is normalized such that 0 means an exact match and 1 means there is no similarity. The original paper actually defined the metric in terms of similarity, so the distance is defined as the inversion of that value (distance = 1 − similarity).