enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Long division - Wikipedia

    en.wikipedia.org/wiki/Long_division

    When doing long division, keep the numbers lined up straight from top to bottom under the tableau. After each step, be sure the remainder for that step is less than the divisor. If it is not, there are three possible problems: the multiplication is wrong, the subtraction is wrong, or a greater quotient is needed.

  3. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    Polynomial long division is an algorithm that implements the Euclidean division of polynomials, which starting from two polynomials A (the dividend) and B (the divisor) produces, if B is not zero, a quotient Q and a remainder R such that A = BQ + R, and either R = 0 or the degree of R is lower than the degree of B.

  4. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.

  5. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    In the first step, the final nonzero remainder r N−1 is shown to divide both a and b. Since it is a common divisor, it must be less than or equal to the greatest common divisor g. In the second step, it is shown that any common divisor of a and b, including g, must divide r N−1; therefore, g must be less than or equal to r N−1.

  6. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    Calculate the remainders left by each product on dividing by 7. Add these remainders. The remainder of the sum when divided by 7 is the remainder of the given number when divided by 7. For example: The number 194,536 leaves a remainder of 6 on dividing by 7. The number 510,517,813 leaves a remainder of 1 on dividing by 7.

  7. Euclidean division - Wikipedia

    en.wikipedia.org/wiki/Euclidean_division

    The computation of the quotient and the remainder from the dividend and the divisor is called division, or in case of ambiguity, Euclidean division. The theorem is frequently referred to as the division algorithm (although it is a theorem and not an algorithm), because its proof as given below lends itself to a simple division algorithm for ...

  8. Synthetic division - Wikipedia

    en.wikipedia.org/wiki/Synthetic_division

    Animation showing the use of synthetic division to find the quotient of + + + by .Note that there is no term in , so the fourth column from the right contains a zero.. In algebra, synthetic division is a method for manually performing Euclidean division of polynomials, with less writing and fewer calculations than long division.

  9. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    The greatest common divisor is the last non zero entry, 2 in the column "remainder". The computation stops at row 6, because the remainder in it is 0. Bézout coefficients appear in the last two columns of the second-to-last row. In fact, it is easy to verify that −9 × 240 + 47 × 46 = 2.