Search results
Results from the WOW.Com Content Network
The Schwinger–Dyson equations (SDEs) or Dyson–Schwinger equations, named after Julian Schwinger and Freeman Dyson, are general relations between correlation functions in quantum field theories (QFTs).
The scattering amplitude is evaluated recursively through a set of Dyson-Schwinger equations. The computational cost of this algorithm grows asymptotically as 3 n, where n is the number of particles involved in the process, compared to n! in the traditional Feynman graphs approach. Unitary gauge is used and mass effects are available as well.
Schwinger-Dyson equation; ... is used in quantum chemistry and condensed matter physics and is defined by the gauge ... for example the Clifford Algebra and as it is ...
The Maris-Tandy model can be applied to solve for the structure of pions, kaons, and a selection of vector mesons from the homogeneous Bethe-Salpeter equation [1]. [2] It can also be used to solve for the quark-photon vertex from the inhomogeneous Bethe-Salpeter equation, [3] for the elastic form factors of pseudoscalar mesons, [4] [5] and for the radiative transitions of mesons. [6]
Defining equation (physical chemistry) List of equations in classical mechanics; Table of thermodynamic equations; List of equations in wave theory; List of electromagnetism equations; List of relativistic equations; List of equations in fluid mechanics; List of equations in gravitation; List of photonics equations; List of equations in quantum ...
Bargmann–Wigner equations; Schwinger-Dyson equation; Renormalization group equation ... The most famous example of the latter is the phenomenon of Hawking radiation ...
For example, renormalization in QED modifies the mass of the free field electron to match that of a physical electron (with an electromagnetic field), and will in doing so add a term to the free field Lagrangian which must be cancelled by a counterterm in the interaction Lagrangian, that then shows up as a two-line vertex in the Feynman diagrams.
By utilizing the interaction picture, one can use time-dependent perturbation theory to find the effect of H 1,I, [15]: 355ff e.g., in the derivation of Fermi's golden rule, [15]: 359–363 or the Dyson series [15]: 355–357 in quantum field theory: in 1947, Shin'ichirÅ Tomonaga and Julian Schwinger appreciated that covariant perturbation ...