enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Recursively enumerable language - Wikipedia

    en.wikipedia.org/.../Recursively_enumerable_language

    In mathematics, logic and computer science, a formal language is called recursively enumerable (also recognizable, partially decidable, semidecidable, Turing-acceptable or Turing-recognizable) if it is a recursively enumerable subset in the set of all possible words over the alphabet of the language, i.e., if there exists a Turing machine which will enumerate all valid strings of the language.

  3. Chomsky hierarchy - Wikipedia

    en.wikipedia.org/wiki/Chomsky_hierarchy

    Note that the set of grammars corresponding to recursive languages is not a member of this hierarchy; these would be properly between Type-0 and Type-1. Every regular language is context-free, every context-free language is context-sensitive, every context-sensitive language is recursive and every recursive language is recursively enumerable.

  4. Unrestricted grammar - Wikipedia

    en.wikipedia.org/wiki/Unrestricted_grammar

    Recursively enumerable languages are closed under Kleene star, concatenation, union, and intersection, but not under set difference; see Recursively enumerable language#Closure properties. The equivalence of unrestricted grammars to Turing machines implies the existence of a universal unrestricted grammar, a grammar capable of accepting any ...

  5. List of undecidable problems - Wikipedia

    en.wikipedia.org/wiki/List_of_undecidable_problems

    Though undecidable languages are not recursive languages, they may be subsets of Turing recognizable languages: i.e., such undecidable languages may be recursively enumerable. Many, if not most, undecidable problems in mathematics can be posed as word problems : determining when two distinct strings of symbols (encoding some mathematical ...

  6. RE (complexity) - Wikipedia

    en.wikipedia.org/wiki/RE_(complexity)

    The set of recursive languages is a subset of both RE and co-RE. [3] In fact, it is the intersection of those two classes, because we can decide any problem for which there exists a recogniser and also a co-recogniser by simply interleaving them until one obtains a result.

  7. Enumerator (computer science) - Wikipedia

    en.wikipedia.org/wiki/Enumerator_(computer_science)

    An Enumerable Language is Turing Recognizable. It's very easy to construct a Turing Machine that recognizes the enumerable language . We can have two tapes. On one tape we take the input string and on the other tape, we run the enumerator to enumerate the strings in the language one after another.

  8. Computably enumerable set - Wikipedia

    en.wikipedia.org/wiki/Computably_enumerable_set

    A recursively enumerable language is a computably enumerable subset of a formal language. The set of all provable sentences in an effectively presented axiomatic system is a computably enumerable set. Matiyasevich's theorem states that every computably enumerable set is a Diophantine set (the converse is trivially true).

  9. Computability theory - Wikipedia

    en.wikipedia.org/wiki/Computability_theory

    Thus the halting problem is an example of a computably enumerable (c.e.) set, which is a set that can be enumerated by a Turing machine (other terms for computably enumerable include recursively enumerable and semidecidable). Equivalently, a set is c.e. if and only if it is the range of some computable function.