Search results
Results from the WOW.Com Content Network
Conjecture Field Comments Eponym(s) Cites 1/3–2/3 conjecture: order theory: n/a: 70 abc conjecture: number theory: ⇔Granville–Langevin conjecture, Vojta's conjecture in dimension 1 ⇒Erdős–Woods conjecture, Fermat–Catalan conjecture Formulated by David Masser and Joseph Oesterlé. [1] Proof claimed in 2012 by Shinichi Mochizuki: n/a ...
The Clay Mathematics Institute officially designated the title Millennium Problem for the seven unsolved mathematical problems, the Birch and Swinnerton-Dyer conjecture, Hodge conjecture, Navier–Stokes existence and smoothness, P versus NP problem, Riemann hypothesis, Yang–Mills existence and mass gap, and the Poincaré conjecture at the ...
The Erdős–Turán conjecture on additive bases of natural numbers. A conjecture on quickly growing integer sequences with rational reciprocal series. A conjecture with Norman Oler [2] on circle packing in an equilateral triangle with a number of circles one less than a triangular number. The minimum overlap problem to estimate the limit of M(n).
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. [1] [2] [3] Some conjectures, such as the Riemann hypothesis or Fermat's conjecture (now a theorem, proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to ...
List of mathematical functions; List of mathematical identities; List of mathematical proofs; List of misnamed theorems; List of scientific laws; List of theories; Most of the results below come from pure mathematics, but some are from theoretical physics, economics, and other applied fields.
In mathematics, the Simon problems (or Simon's problems) are a series of fifteen questions posed in the year 2000 by Barry Simon, an American mathematical physicist. [1] [2] Inspired by other collections of mathematical problems and open conjectures, such as the famous list by David Hilbert, the Simon problems concern quantum operators. [3]
In other words, insofar as economics became a mathematical theory, mathematical economics ceased to rely on empirical refutation but rather relied on mathematical proofs and disproof. [134] According to Popper, falsifiable assumptions can be tested by experiment and observation while unfalsifiable assumptions can be explored mathematically for ...
Hilbert’s sixth problem was a proposal to expand the axiomatic method outside the existing mathematical disciplines, to physics and beyond. This expansion requires development of semantics of physics with formal analysis of the notion of physical reality that should be done. [9]