enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equivalent definitions of mathematical structures - Wikipedia

    en.wikipedia.org/wiki/Equivalent_definitions_of...

    In mathematics, equivalent definitions are used in two ... identification problem, ... in contemporary mathematics is an example of a structured set." (quoted from ...

  3. Equivalence relation - Wikipedia

    en.wikipedia.org/wiki/Equivalence_relation

    Given any set , an equivalence relation over the set [] of all functions can be obtained as follows. Two functions are deemed equivalent when their respective sets of fixpoints have the same cardinality , corresponding to cycles of length one in a permutation .

  4. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...

  5. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    In constructive mathematics, "not empty" and "inhabited" are not equivalent: every inhabited set is not empty but the converse is not always guaranteed; that is, in constructive mathematics, a set that is not empty (where by definition, "is empty" means that the statement () is true) might not have an inhabitant (which is an such that ).

  6. Equivalence class - Wikipedia

    en.wikipedia.org/wiki/Equivalence_class

    In mathematics, when the elements of some set have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set into equivalence classes. These equivalence classes are constructed so that elements a {\displaystyle a} and b {\displaystyle b} belong to the same equivalence class if, and only if , they are ...

  7. Equality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Equality_(mathematics)

    Ernst Zermelo, a contributer to modern Set theory, was the first to explicitly formalize set equality in his Zermelo set theory (now obsolete), by his Axiom der Bestimmtheit. [31] Equality of sets is axiomatized in set theory in two different ways, depending on whether the axioms are based on a first-order language with or without equality.

  8. Equivalence (measure theory) - Wikipedia

    en.wikipedia.org/wiki/Equivalence_(measure_theory)

    Define the two measures on the real line as = [,] () = [,] for all Borel sets. Then and are equivalent, since all sets outside of [,] have and measure zero, and a set inside [,] is a -null set or a -null set exactly when it is a null set with respect to Lebesgue measure.

  9. Countable set - Wikipedia

    en.wikipedia.org/wiki/Countable_set

    In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. [a] Equivalently, a set is countable if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time ...