enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Romberg's method - Wikipedia

    en.wikipedia.org/wiki/Romberg's_method

    The zeroeth extrapolation, R(n, 0), is equivalent to the trapezoidal rule with 2 n + 1 points; the first extrapolation, R(n, 1), is equivalent to Simpson's rule with 2 n + 1 points. The second extrapolation, R(n, 2), is equivalent to Boole's rule with 2 n + 1 points. The further extrapolations differ from Newton-Cotes formulas.

  3. Extrapolation - Wikipedia

    en.wikipedia.org/wiki/Extrapolation

    A sound choice of which extrapolation method to apply relies on a priori knowledge of the process that created the existing data points. Some experts have proposed the use of causal forces in the evaluation of extrapolation methods. [2] Crucial questions are, for example, if the data can be assumed to be continuous, smooth, possibly periodic, etc.

  4. Multivariate interpolation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_interpolation

    Example C++ code for several 1D, 2D and 3D spline interpolations (including Catmull-Rom splines). Multi-dimensional Hermite Interpolation and Approximation, Prof. Chandrajit Bajaja, Purdue University; Python library containing 3D and 4D spline interpolation methods.

  5. Richardson extrapolation - Wikipedia

    en.wikipedia.org/wiki/Richardson_extrapolation

    An example of Richardson extrapolation method in two dimensions. In numerical analysis , Richardson extrapolation is a sequence acceleration method used to improve the rate of convergence of a sequence of estimates of some value A ∗ = lim h → 0 A ( h ) {\displaystyle A^{\ast }=\lim _{h\to 0}A(h)} .

  6. Curve fitting - Wikipedia

    en.wikipedia.org/wiki/Curve_fitting

    Fitting of a noisy curve by an asymmetrical peak model, with an iterative process (Gauss–Newton algorithm with variable damping factor α).Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints.

  7. Euler–Maruyama method - Wikipedia

    en.wikipedia.org/wiki/Euler–Maruyama_method

    The following Python code implements the Euler–Maruyama method and uses it to solve the Ornstein–Uhlenbeck process defined by d Y t = θ ⋅ ( μ − Y t ) d t + σ d W t {\displaystyle dY_{t}=\theta \cdot (\mu -Y_{t})\,{\mathrm {d} }t+\sigma \,{\mathrm {d} }W_{t}}

  8. Neville's algorithm - Wikipedia

    en.wikipedia.org/wiki/Neville's_algorithm

    This process yields p 0,4 (x), the value of the polynomial going through the n + 1 data points (x i, y i) at the point x. This algorithm needs O(n 2) floating point operations to interpolate a single point, and O(n 3) floating point operations to interpolate a polynomial of degree n.

  9. Symbolic regression - Wikipedia

    en.wikipedia.org/wiki/Symbolic_regression

    This is an example of divide and conquer, which reduces the size of the problem to be more manageable. AI Feynman also transforms the inputs and outputs of the mystery function in order to produce a new function which can be solved with other techniques, and performs dimensional analysis to reduce the number of independent variables involved.