Search results
Results from the WOW.Com Content Network
A resistor–capacitor circuit (RC circuit), or RC filter or RC network, is an electric circuit composed of resistors and capacitors. It may be driven by a voltage or current source and these will produce different responses. A first order RC circuit is composed of one resistor and one capacitor and is the simplest type of RC circuit.
Pearson-Anson oscillator circuit. The Pearson–Anson effect, discovered in 1922 by Stephen Oswald Pearson [1] and Horatio Saint George Anson, [2] [3] is the phenomenon of an oscillating electric voltage produced by a neon bulb connected across a capacitor, when a direct current is applied through a resistor. [4]
For instance, a linear resistor with a fixed current applied to it has only one solution for the voltage across it. On the other hand, the non-linear tunnel diode has up to three solutions for the voltage for a given current. That is, a particular solution for the current through the diode is not unique, there may be others, equally valid.
It is the time required to charge the capacitor, through the resistor, from an initial charge voltage of zero to approximately 63.2% of the value of an applied DC voltage, or to discharge the capacitor through the same resistor to approximately 36.8% of its initial charge voltage.
Then the resistance seen by the test voltage is found using the circuit in the right panel of Figure 1 and is simply V X / I X = R 1. Form the product C 1 R 1. Add these terms. In effect, it is as though each capacitor charges and discharges through the resistance found in the circuit when the other capacitor is an open circuit.
A simple electric circuit made up of a voltage source and a resistor. Here, =, according to Ohm's law. An electrical network is an interconnection of electrical components (e.g., batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e.g., voltage sources, current sources, resistances, inductances ...
One of the issues with using an RC network to generate a PoR pulse is the sensitivity of the R and C values to the power-supply ramp characteristics. When the power supply ramp is rapid, the R and C values can be calculated so that the time to reach the switching threshold of the Schmitt trigger is enough to apply a long enough reset pulse.
Kirchhoff's circuit laws were originally obtained from experimental results. However, the current law can be viewed as an extension of the conservation of charge, since charge is the product of current and the time the current has been flowing. If the net charge in a region is constant, the current law will hold on the boundaries of the region.