Search results
Results from the WOW.Com Content Network
A helium atom is an atom of the chemical element helium. Helium is composed of two electrons bound by the electromagnetic force to a nucleus containing two protons along with two neutrons, depending on the isotope , held together by the strong force .
This page shows the electron configurations of the neutral gaseous atoms in their ground states. For each atom the subshells are given first in concise form, then with all subshells written out, followed by the number of electrons per shell.
The helium atom. Depicted are the ... Phase diagram of helium-4. ... [140] [141] [142] In the Earth's crust, the concentration of helium is 8 parts per billion. In ...
English: A depiction of the atomic structure of the helium atom. The darkness of the electron cloud corresponds to the line-of-sight integral over the probability function of the 1s atomic orbital of the electron. The magnified nucleus is schematic, showing protons in red and neutrons in purple.
In chemistry and atomic physics, an electron shell may be thought of as an orbit that electrons follow around an atom's nucleus.The closest shell to the nucleus is called the "1 shell" (also called the "K shell"), followed by the "2 shell" (or "L shell"), then the "3 shell" (or "M shell"), and so on further and further from the nucleus.
If an atom has more electrons than protons, then it has an overall negative charge, and is called a negative ion (or anion). Conversely, if it has more protons than electrons, it has a positive charge, and is called a positive ion (or cation). The electrons of an atom are attracted to the protons in an atomic nucleus by the electromagnetic force.
In each term of an electron configuration, n is the positive integer that precedes each orbital letter (helium's electron configuration is 1s 2, therefore n = 1, and the orbital contains two electrons). An atom's nth electron shell can accommodate 2n 2 electrons. For example, the first shell can accommodate two electrons, the second shell eight ...
The p-block elements show variable oxidation states usually differing by multiples of two. The reactivity of elements in a group generally decreases downwards. (Helium breaks this trend in group 18 by being more reactive than neon, but since helium is actually an s-block element, the p-block portion of the trend remains intact.)