enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Best–worst scaling - Wikipedia

    en.wikipedia.org/wiki/Best–worst_scaling

    In general with BWS, survey respondents are shown a subset of items from a master list and are asked to indicate the best and worst items (or most and least important, or most and least appealing, etc.). The task is repeated a number of times, varying the particular subset of items in a systematic way, typically according to a statistical ...

  3. Mallows's Cp - Wikipedia

    en.wikipedia.org/wiki/Mallows's_Cp

    In statistics, Mallows's, [1] [2] named for Colin Lingwood Mallows, is used to assess the fit of a regression model that has been estimated using ordinary least squares.It is applied in the context of model selection, where a number of predictor variables are available for predicting some outcome, and the goal is to find the best model involving a subset of these predictors.

  4. Duncan's new multiple range test - Wikipedia

    en.wikipedia.org/wiki/Duncan's_new_multiple_range...

    Duncan's multiple range test makes use of the studentized range distribution in order to determine critical values for comparisons between means. Note that different comparisons between means may differ by their significance levels- since the significance level is subject to the size of the subset of means in question.

  5. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Graph-based model s: a clique, that is, a subset of nodes in a graph such that every two nodes in the subset are connected by an edge can be considered as a prototypical form of cluster. Relaxations of the complete connectivity requirement (a fraction of the edges can be missing) are known as quasi-cliques, as in the HCS clustering algorithm .

  6. Omnibus test - Wikipedia

    en.wikipedia.org/wiki/Omnibus_test

    The F-test in ANOVA is an example of an omnibus test, which tests the overall significance of the model. A significant F test means that among the tested means, at least two of the means are significantly different, but this result doesn't specify exactly which means are different one from the other.

  7. Cross-validation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Cross-validation_(statistics)

    In other words, validation subsets may overlap. This method also exhibits Monte Carlo variation, meaning that the results will vary if the analysis is repeated with different random splits. As the number of random splits approaches infinity, the result of repeated random sub-sampling validation tends towards that of leave-p-out cross-validation.

  8. Multiple comparisons problem - Wikipedia

    en.wikipedia.org/wiki/Multiple_comparisons_problem

    In statistics, the multiple comparisons, multiplicity or multiple testing problem occurs when one considers a set of statistical inferences simultaneously [1] or estimates a subset of parameters selected based on the observed values. [2] The larger the number of inferences made, the more likely erroneous inferences become.

  9. Questionnaire construction - Wikipedia

    en.wikipedia.org/wiki/Questionnaire_construction

    carrying out a small pretest of the questionnaire, using a small subset of target respondents. Results can inform a researcher of errors such as missing questions, or logical and procedural errors. estimating the measurement quality of the questions. This can be done for instance using test-retest, [2] quasi-simplex, [3] or mutlitrait ...