Search results
Results from the WOW.Com Content Network
The extended Riemann hypothesis for abelian extension of the rationals is equivalent to the generalized Riemann hypothesis. The Riemann hypothesis can also be extended to the L-functions of Hecke characters of number fields. The grand Riemann hypothesis extends it to all automorphic zeta functions, such as Mellin transforms of Hecke eigenforms.
The Riemann hypothesis was one of a series of conjectures he made about the function's properties. In Riemann's work, there are many more interesting developments. He proved the functional equation for the zeta function (already known to Leonhard Euler ), behind which a theta function lies.
The extended Riemann hypothesis asserts that for every number field K and every complex number s with ζ K (s) = 0: if the real part of s is between 0 and 1, then it is in fact 1/2. The ordinary Riemann hypothesis follows from the extended one if one takes the number field to be Q, with ring of integers Z.
In mathematics, the grand Riemann hypothesis is a generalisation of the Riemann hypothesis and generalized Riemann hypothesis. It states that the nontrivial zeros of all automorphic L -functions lie on the critical line 1 2 + i t {\displaystyle {\frac {1}{2}}+it} with t {\displaystyle t} a real number variable and i {\displaystyle i} the ...
Jérôme Franel (1859–1939) was a Swiss mathematician who specialised in analytic number theory.He is mainly known through a 1924 paper, [1] in which he establishes the equivalence of the Riemann hypothesis to a statement on the size of the discrepancy in the Farey sequences, and which is directly followed (in the same journal) by a development on the same subject by Edmund Landau.
The axiom of constructibility and the generalized continuum hypothesis each imply the axiom of choice and so are strictly stronger than it. In class theories such as Von Neumann–Bernays–Gödel set theory and Morse–Kelley set theory , there is an axiom called the axiom of global choice that is stronger than the axiom of choice for sets ...
However, the link between the Riemann hypothesis and the prime number theorem had been known before in Continental Europe, and Littlewood wrote later in his book, A Mathematician's Miscellany that his rediscovery of the result did not shed a positive light on the isolated nature of British mathematics at the time. [7] [8]
The Riemann hypothesis is concerned with the locations of these nontrivial zeros, and states that: The real part of every nontrivial zero of the Riemann zeta function is 1/2. The Riemann hypothesis is that all nontrivial zeros of the analytical continuation of the Riemann zeta function have a real part of 1 / 2 .