Search results
Results from the WOW.Com Content Network
In statistical hypothesis testing, a two-sample test is a test performed on the data of two random samples, each independently obtained from a different given population. The purpose of the test is to determine whether the difference between these two populations is statistically significant .
In statistics, one-way analysis of variance (or one-way ANOVA) is a technique to compare whether two or more samples' means are significantly different (using the F distribution). This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way". [1]
In statistics, Welch's t-test, or unequal variances t-test, is a two-sample location test which is used to test the (null) hypothesis that two populations have equal means. It is named for its creator, Bernard Lewis Welch , and is an adaptation of Student's t -test , [ 1 ] and is more reliable when the two samples have unequal variances and ...
The difference between the two sample means, each denoted by X i, which appears in the numerator for all the two-sample testing approaches discussed above, is ¯ ¯ = The sample standard deviations for the two samples are approximately 0.05 and 0.11, respectively. For such small samples, a test of equality between the two population variances ...
We could then calculate the sample means within the treated and untreated groups of subjects, and compare these means to each other. In a "paired difference analysis", we would first subtract the pre-treatment value from the post-treatment value for each subject, then compare these differences to zero. See also paired permutation test.
The calculations of ANOVA can be characterized as computing a number of means and variances, dividing two variances and comparing the ratio to a handbook value to determine statistical significance. Calculating a treatment effect is then trivial: "the effect of any treatment is estimated by taking the difference between the mean of the ...
Example of samples from two populations with the same mean but different dispersion. The blue population is much more dispersed than the red population. In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. [1]
Statistical testing uses data from samples to assess, or make inferences about, a statistical population.For example, we may measure the yields of samples of two varieties of a crop, and use a two sample test to assess whether the mean values of this yield differs between varieties.