Search results
Results from the WOW.Com Content Network
An approximation for the volume of a thin spherical shell is the surface area of the inner sphere multiplied by the thickness t of the shell: [2] V ≈ 4 π r 2 t , {\displaystyle V\approx 4\pi r^{2}t,}
The original paper by Gurney analyzed the situation of an exploding shell or bomb, a mass of explosives surrounded by a solid shell. Other researchers have extended similar methods of analysis to other geometries. All of the equations derived based on Gurney's methods are collectively called "Gurney equations".
In physics, a characteristic length is an important dimension that defines the scale of a physical system. Often, such a length is used as an input to a formula in order to predict some characteristics of the system, and it is usually required by the construction of a dimensionless quantity, in the general framework of dimensional analysis and in particular applications such as fluid mechanics.
The most efficient way to pack different-sized circles together is not obvious. In geometry, circle packing is the study of the arrangement of circles (of equal or varying sizes) on a given surface such that no overlapping occurs and so that no circle can be enlarged without creating an overlap.
The following sizing methodology is based on the assumption that those flow rates are known. Use a vertical pressure vessel with a length–diameter ratio of about 3 to 4, and size the vessel to provide about 5 minutes of liquid inventory between the normal liquid level and the bottom of the vessel (with the normal liquid level being somewhat ...
In fluid dynamics, Sauter mean diameter (SMD) is an average measure of particle size. It was originally developed by German scientist Josef Sauter in the late 1920s. [1] [2] It is defined as the diameter of a sphere that has the same volume/surface area ratio as a particle of interest. Several methods have been devised to obtain a good estimate ...
The Knudsen number is a dimensionless number defined as =, where = mean free path [L 1], = representative physical length scale [L 1].. The representative length scale considered, , may correspond to various physical traits of a system, but most commonly relates to a gap length over which thermal transport or mass transport occurs through a gas phase.
Strictly speaking, the laser diffraction equivalent diameter is the diameter of a sphere yielding, on the same detector geometry, the same diffraction pattern as the particle. In the size regimen where the Fraunhofer approximation is valid, this diameter corresponds to the projected area diameter of the particle in random orientation. For ...