Search results
Results from the WOW.Com Content Network
In the present day, this problem is widely known because it appears as an exercise in many first-year calculus textbooks (for example that of Stewart [6]). Let a = the height of the bottom of the painting above eye level; b = the height of the top of the painting above eye level; x = the viewer's distance from the wall;
Two of the seven non-isomorphic solutions to this problem can be embedded as structures in the Fano 3-space. In particular, a spread of PG(3, 2) is a partition of points into disjoint lines, and corresponds to the arrangement of girls (points) into disjoint rows (lines of a spread) for a single day of Kirkman's schoolgirl problem. There are 56 ...
The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .
In mathematics, a projection is an idempotent mapping of a set (or other mathematical structure) into a subset (or sub-structure). In this case, idempotent means that projecting twice is the same as projecting once. The restriction to a subspace of a projection is also called a projection, even if the idempotence property is lost. An everyday ...
In vector calculus, the Jacobian matrix (/ dʒ ə ˈ k oʊ b i ə n /, [1] [2] [3] / dʒ ɪ-, j ɪ-/) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives.
In mathematics, in the area of numerical analysis, Galerkin methods are a family of methods for converting a continuous operator problem, such as a differential equation, commonly in a weak formulation, to a discrete problem by applying linear constraints determined by finite sets of basis functions.
The system was originally known as MOOCulus and Calculus One. [2] The course features over 25 hours of video and exercises. The instructor is Jim Fowler, an associate professor of mathematics at the Ohio State University. [3] The course was available for the first time on Coursera during the Spring Semester of 2012–13.
The three-body problem is a special case of the n-body problem, which describes how n objects move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n-body problem for details