enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rank factorization - Wikipedia

    en.wikipedia.org/wiki/Rank_factorization

    Every finite-dimensional matrix has a rank decomposition: Let be an matrix whose column rank is . Therefore, there are r {\textstyle r} linearly independent columns in A {\textstyle A} ; equivalently, the dimension of the column space of A {\textstyle A} is r {\textstyle r} .

  3. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    A matrix that has rank min(m, n) is said to have full rank; otherwise, the matrix is rank deficient. Only a zero matrix has rank zero. f is injective (or "one-to-one") if and only if A has rank n (in this case, we say that A has full column rank). f is surjective (or "onto") if and only if A has rank m (in this case, we say that A has full row ...

  4. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Applicable to: m-by-n matrix A of rank r Decomposition: A = C F {\displaystyle A=CF} where C is an m -by- r full column rank matrix and F is an r -by- n full row rank matrix Comment: The rank factorization can be used to compute the Moore–Penrose pseudoinverse of A , [ 2 ] which one can apply to obtain all solutions of the linear system A x ...

  5. Nonnegative rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Nonnegative_rank_(linear...

    There are several equivalent definitions, all modifying the definition of the linear rank slightly. Apart from the definition given above, there is the following: The nonnegative rank of a nonnegative m×n-matrix A is equal to the smallest number q such there exists a nonnegative m×q-matrix B and a nonnegative q×n-matrix C such that A = BC (the usual matrix product).

  6. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    In matrix inversion however, instead of vector b, we have matrix B, where B is an n-by-p matrix, so that we are trying to find a matrix X (also a n-by-p matrix): = =. We can use the same algorithm presented earlier to solve for each column of matrix X. Now suppose that B is the identity matrix of size n.

  7. Schmidt decomposition - Wikipedia

    en.wikipedia.org/wiki/Schmidt_decomposition

    Consider a vector of the tensor product . in the form of Schmidt decomposition = =. Form the rank 1 matrix =.Then the partial trace of , with respect to either system A or B, is a diagonal matrix whose non-zero diagonal elements are | |.

  8. Rouché–Capelli theorem - Wikipedia

    en.wikipedia.org/wiki/Rouché–Capelli_theorem

    Consider the system of equations x + y + 2z = 3, x + y + z = 1, 2x + 2y + 2z = 2.. The coefficient matrix is = [], and the augmented matrix is (|) = [].Since both of these have the same rank, namely 2, there exists at least one solution; and since their rank is less than the number of unknowns, the latter being 3, there are infinitely many solutions.

  9. Row equivalence - Wikipedia

    en.wikipedia.org/wiki/Row_equivalence

    The rank of a matrix is equal to the dimension of the row space, so row equivalent matrices must have the same rank. This is equal to the number of pivots in the reduced row echelon form. A matrix is invertible if and only if it is row equivalent to the identity matrix.