Search results
Results from the WOW.Com Content Network
A velocity potential is not unique. If ϕ is a velocity potential, then ϕ + f(t) is also a velocity potential for u, where f(t) is a scalar function of time and can be constant. Velocity potentials are unique up to a constant, or a function solely of the temporal variable. The Laplacian of a velocity potential is equal to the divergence of the ...
The scalar potential is an example of a scalar field. Given a vector field F, the scalar potential P is defined such that: [1] = = (,,), where ∇P is the gradient of P and the second part of the equation is minus the gradient for a function of the Cartesian coordinates x, y, z. [a] In some cases, mathematicians may use a positive sign in front ...
The Liénard–Wiechert potentials describe the classical electromagnetic effect of a moving electric point charge in terms of a vector potential and a scalar potential in the Lorenz gauge. Stemming directly from Maxwell's equations , these describe the complete, relativistically correct, time-varying electromagnetic field for a point charge in ...
The gauge-fixed potentials still have a gauge freedom under all gauge transformations that leave the gauge fixing equations invariant. Inspection of the potential equations suggests two natural choices. In the Coulomb gauge, we impose ∇ ⋅ A = 0, which is mostly used in the case of magneto statics when we can neglect the c −2 ∂ 2 A/∂t ...
The simplest definition for a potential gradient F in one dimension is the following: [1] = = where ϕ(x) is some type of scalar potential and x is displacement (not distance) in the x direction, the subscripts label two different positions x 1, x 2, and potentials at those points, ϕ 1 = ϕ(x 1), ϕ 2 = ϕ(x 2).
Potential flow describes the velocity field as the gradient of a scalar function: the velocity potential. As a result, a potential flow is characterized by an irrotational velocity field , which is a valid approximation for several applications.
As the fluid flows outward, the area of flow increases. As a result, to satisfy continuity equation, the velocity decreases and the streamlines spread out. The velocity at all points at a given distance from the source is the same. Fig 2 - Streamlines and potential lines for source flow. The velocity of fluid flow can be given as -
In physics, the acoustic wave equation is a second-order partial differential equation that governs the propagation of acoustic waves through a material medium resp. a standing wavefield. The equation describes the evolution of acoustic pressure p or particle velocity u as a function of position x and time t. A simplified (scalar) form of the ...