Search results
Results from the WOW.Com Content Network
Haboush's theorem (algebraic groups, representation theory, invariant theory) Hadamard three-circle theorem (complex analysis) Hadamard three-lines theorem (complex analysis) Hadwiger's theorem (geometry, measure theory) Hahn decomposition theorem (measure theory) Hahn embedding theorem (ordered groups) Hairy ball theorem (algebraic topology)
In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ∠ ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid's Elements. [1]
Pages in category "Theorems about circles" The following 21 pages are in this category, out of 21 total. This list may not reflect recent changes. B. Butterfly ...
Circle theorem may refer to: Any of many theorems related to the circle; often taught as a group in GCSE mathematics. These include: Inscribed angle theorem. Thales' theorem, if A, B and C are points on a circle where the line AC is a diameter of the circle, then the angle ∠ABC is a right angle. Alternate segment theorem. Ptolemy's theorem.
Due to the Pythagorean theorem the number () has the simple geometric meanings shown in the diagram: For a point outside the circle () is the squared tangential distance | | of point to the circle . Points with equal power, isolines of Π ( P ) {\displaystyle \Pi (P)} , are circles concentric to circle c {\displaystyle c} .
The second theorem considers five circles in general position passing through a single point M. Each subset of four circles defines a new point P according to the first theorem. Then these five points all lie on a single circle C. The third theorem considers six circles in general position that pass through a single point M. Each subset of five ...
As a consequence of the theorem, opposite angles of cyclic quadrilaterals sum to 180°; conversely, any quadrilateral for which this is true can be inscribed in a circle. As another example, the inscribed angle theorem is the basis for several theorems related to the power of a point with respect to a circle. Further, it allows one to prove ...
Pages in category "Theorems about triangles and circles" The following 18 pages are in this category, out of 18 total. This list may not reflect recent changes. C.