Search results
Results from the WOW.Com Content Network
The hydroxyl radical, Lewis structure shown, contains one unpaired electron. Lewis dot structure of a Hydroxide ion compared to a hydroxyl radical. In chemistry, a radical, also known as a free radical, is an atom, molecule, or ion that has at least one unpaired valence electron.
The hydroxyl radical has a very short in vivo half-life of approximately 10 −9 seconds and a high reactivity. [5] This makes it a very dangerous compound to the organism. [6] [7] Unlike superoxide, which can be detoxified by superoxide dismutase, the hydroxyl radical cannot be eliminated by an enzymatic reaction.
Radical clock reactions involve a competition between a unimolecular radical reaction with a known rate constant and a bimolecular radical reaction with an unknown rate constant to produce unrearranged and rearranged products. The rearrangement of an unrearranged radical, U•, proceeds to form R• (the clock reaction) with a known rate ...
The reaction is driven by the thermodynamic properties of the intermediates and the products. Several other mechanisms have been proposed for this reaction, including a radical mechanism as well as a mechanism involving an aluminium hydride species. The commonly accepted direct hydride transfer is supported by experimental and theoretical data. [6]
Radical reactions must be carried out under inert atmosphere as dioxygen is a triplet radical which will intercept radical intermediates. Because the relative rates of a number of processes are important to the reaction, concentrations must be carefully adjusted to optimize reaction conditions.
These reactions can happen due to the free radicals having an unpaired electron in their valence shell, making them highly reactive. [1] Radical additions are known for a variety of unsaturated substrates, both olefinic or aromatic and with or without heteroatoms. Free-radical reactions depend on one or more relatively weak bonds in a
In organic chemistry, free-radical halogenation is a type of halogenation. This chemical reaction is typical of alkanes and alkyl-substituted aromatics under application of UV light. The reaction is used for the industrial synthesis of chloroform (CHCl 3), dichloromethane (CH 2 Cl 2), and hexachlorobutadiene. It proceeds by a free-radical chain ...
Initiation: The reaction is started by a free-radical source which may be a decomposing radical initiator such as AIBN. In the example in Figure 5, the initiator decomposes to form two fragments (I•) which react with a single monomer molecule to yield a propagating (i.e. growing) polymeric radical of length 1, denoted P 1 •.