Search results
Results from the WOW.Com Content Network
He is best known for his research on sentiment analysis (also called opinion mining), fake/deceptive opinion detection, and using association rules for prediction. He also made important contributions to learning from positive and unlabeled examples (or PU learning ), Web data extraction, and interestingness in data mining.
Rakesh has been granted more than 55 patents. He has published more than 150 research papers, many of them considered seminal. He has written the 1st as well as 2nd highest cited of all papers in the fields of databases and data mining (13th and 15th most cited across all computer science as of February 2007 in CiteSeer).
He served as the director of the Stanford Artificial Intelligence Laboratory (SAIL), where he taught students and undertook research related to data mining, big data, and machine learning. His machine learning course CS229 at Stanford is the most popular course offered on campus with over 1,000 students enrolling some years.
In data analysis, anomaly detection (also referred to as outlier detection and sometimes as novelty detection) is generally understood to be the identification of rare items, events or observations which deviate significantly from the majority of the data and do not conform to a well defined notion of normal behavior. [1]
A well-documented and representative multilingual dataset with the explicit goal of doing good for and by the people whose data was collected. Extracted non-HTML content, cleaned out UI and ads, deduplicated, removed PII, and tokenized.
The focus is on innovative research in data mining, knowledge discovery, and large-scale data analytics. Papers emphasizing theoretical foundations are particularly encouraged, as are novel modeling and algorithmic approaches to specific data mining problems in scientific, business, medical, and engineering applications.
In anomaly detection, the local outlier factor (LOF) is an algorithm proposed by Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng and Jörg Sander in 2000 for finding anomalous data points by measuring the local deviation of a given data point with respect to its neighbours.
If δ ≤ Rejection Region, the data point is not an outlier. The modified Thompson Tau test is used to find one outlier at a time (largest value of δ is removed if it is an outlier). Meaning, if a data point is found to be an outlier, it is removed from the data set and the test is applied again with a new average and rejection region.