Search results
Results from the WOW.Com Content Network
The Old Bedford River, photographed from the bridge at Welney, Norfolk (2008); the camera is looking downstream, south-west of the bridge. The Bedford Level experiment was a series of observations carried out along a 6-mile (10 km) length of the Old Bedford River on the Bedford Level of the Cambridgeshire Fens in the United Kingdom during the 19th and early 20th centuries to deny the curvature ...
For example, the Schwarzschild radius r s of the Earth is roughly 9 mm (3 ⁄ 8 inch); at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The Schwarzschild radius of the Sun is much larger, roughly 2953 meters, but at its surface, the ratio r s / r is roughly 4 parts in a million.
Schuler tuning is a design principle for inertial navigation systems that accounts for the curvature of the Earth. An inertial navigation system, used in submarines, ships, aircraft, and other vehicles to keep track of position, determines directions with respect to three axes pointing "north", "east", and "down".
A data set which describes the global average of the Earth's surface curvature is called the mean Earth Ellipsoid. It refers to a theoretical coherence between the geographic latitude and the meridional curvature of the geoid. The latter is close to the mean sea level, and therefore an ideal Earth ellipsoid has the same volume as the geoid.
If k = −1, then (loosely speaking) one can say that i · a is the radius of curvature of the universe. a is the scale factor which is taken to be 1 at the present time. k is the current spatial curvature (when a = 1). If the shape of the universe is hyperspherical and R t is the radius of curvature (R 0 at the present), then a = R t / R 0
In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress–energy tensor (representing matter, for instance). Thus, for example, the path of a planet orbiting a star is the projection of a geodesic of the curved four-dimensional (4-D) spacetime ...
What the Riemann tensor allows us to do is tell, mathematically, whether a space is flat or, if curved, how much curvature takes place in any given region. In order to derive the Riemann curvature tensor we must first recall the definition of the covariant derivative of a tensor with one and two indices;
In the 19th century, many astronomers and geodesists were engaged in detailed studies of the Earth's curvature along different meridian arcs. The analyses resulted in a great many model ellipsoids such as Plessis 1817, Airy 1830, Bessel 1841, Everest 1830, and Clarke 1866. [31] A comprehensive list of ellipsoids is given under Earth ellipsoid.