enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Earth ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Earth_ellipsoid

    A data set which describes the global average of the Earth's surface curvature is called the mean Earth Ellipsoid. It refers to a theoretical coherence between the geographic latitude and the meridional curvature of the geoid. The latter is close to the mean sea level, and therefore an ideal Earth ellipsoid has the same volume as the geoid.

  3. List of map projections - Wikipedia

    en.wikipedia.org/wiki/List_of_map_projections

    Equal Earth: Pseudocylindrical Equal-area Bojan Šavrič, Tom Patterson, Bernhard Jenny Inspired by the Robinson projection, but retains the relative size of areas. 2011 Natural Earth: Pseudocylindrical Compromise Tom Patterson: Originally by interpolation of tabulated values. Now has a polynomial. 1973 Tobler hyperelliptical: Pseudocylindrical ...

  4. Earth radius - Wikipedia

    en.wikipedia.org/wiki/Earth_radius

    Earth radius (denoted as R 🜨 or R E) is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid (an oblate ellipsoid), the radius ranges from a maximum (equatorial radius, denoted a) of nearly 6,378 km (3,963 mi) to a minimum (polar radius, denoted b) of nearly 6,357 km (3,950 mi).

  5. Geodesics on an ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid

    There are several ways of defining geodesics (Hilbert & Cohn-Vossen 1952, pp. 220–221).A simple definition is as the shortest path between two points on a surface. However, it is frequently more useful to define them as paths with zero geodesic curvature—i.e., the analogue of straight lines on a curved su

  6. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    The variation formula computations above define the principal symbol of the mapping which sends a pseudo-Riemannian metric to its Riemann tensor, Ricci tensor, or scalar curvature.

  7. Triangulation (surveying) - Wikipedia

    en.wikipedia.org/wiki/Triangulation_(surveying)

    Snell calculated how the planar formulae could be corrected to allow for the curvature of the earth. He also showed how to resection, or calculate, the position of a point inside a triangle using the angles cast between the vertices at the unknown point. These could be measured much more accurately than bearings of the vertices, which depended ...

  8. Meridian arc - Wikipedia

    en.wikipedia.org/wiki/Meridian_arc

    In the 19th century, many astronomers and geodesists were engaged in detailed studies of the Earth's curvature along different meridian arcs. The analyses resulted in a great many model ellipsoids such as Plessis 1817, Airy 1830, Bessel 1841, Everest 1830, and Clarke 1866. [31] A comprehensive list of ellipsoids is given under Earth ellipsoid.

  9. Schuler tuning - Wikipedia

    en.wikipedia.org/wiki/Schuler_tuning

    Schuler tuning is a design principle for inertial navigation systems that accounts for the curvature of the Earth. An inertial navigation system, used in submarines, ships, aircraft, and other vehicles to keep track of position, determines directions with respect to three axes pointing "north", "east", and "down".