Search results
Results from the WOW.Com Content Network
In combinatorial game theory, poset games are mathematical games of strategy, generalizing many well-known games such as Nim and Chomp. [1] In such games, two players start with a poset (a partially ordered set ), and take turns choosing one point in the poset, removing it and all points that are greater.
A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.
Thus, an equivalent definition of the dimension of a poset P is "the least cardinality of a realizer of P." It can be shown that any nonempty family R of linear extensions is a realizer of a finite partially ordered set P if and only if, for every critical pair (x,y) of P, y < i x for some order < i in R.
In mathematics, in the branch of combinatorics, a graded poset is a partially-ordered set (poset) P equipped with a rank function ρ from P to the set N of all natural numbers. ρ must satisfy the following two properties: The rank function is compatible with the ordering, meaning that for all x and y in the order, if x < y then ρ(x) < ρ(y), and
In the mathematical area of order theory, completeness properties assert the existence of certain infima or suprema of a given partially ordered set (poset). The most familiar example is the completeness of the real numbers. A special use of the term refers to complete partial orders or complete lattices. However, many other interesting notions ...
A nontrivial poset satisfying the descending chain condition is said to have deviation 0. Then, inductively, a poset is said to have deviation at most α (for an ordinal α) if for every descending chain of elements a 0 > a 1 >... all but a finite number of the posets of elements between a n and a n+1 have deviation less than α. The deviation ...
In mathematics, the poset topology associated to a poset (S, ≤) is the Alexandrov topology (open sets are upper sets) on the poset of finite chains of (S, ≤), ordered by inclusion. Let V be a set of vertices. An abstract simplicial complex Δ is a set of finite sets of vertices, known as faces , such that
A pre-caliber of a poset P is a cardinal κ such that for any collection of elements of P indexed by κ, there is a subcollection of cardinality κ that is centered. Here a subset of a poset is called centered if for any finite subset there is an element of the poset less than or equal to all of them.