Search results
Results from the WOW.Com Content Network
Peak-to-peak amplitude (abbreviated p–p or PtP or PtoP) is the change between peak (highest amplitude value) and trough (lowest amplitude value, which can be negative). With appropriate circuitry, peak-to-peak amplitudes of electric oscillations can be measured by meters or by viewing the waveform on an oscilloscope .
In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The square of the modulus of this quantity represents a probability density . Probability amplitudes provide a relationship between the quantum state vector of a system and the results of observations of that system, a link was first ...
The first automatic system incorporating all the steps for the calculation of a cross section, from Feynman graph generation, amplitude generation through a REDUCE source code that produces a FORTRAN code, phase space integration and event generation with BASES/SPRING[17] is GRAND[18]. It was limited to tree-level processes in QED.
When calculating scattering cross-sections in particle physics, the interaction between particles can be described by starting from a free field that describes the incoming and outgoing particles, and including an interaction Hamiltonian to describe how the particles deflect one another. The amplitude for scattering is the sum of each possible ...
Different fields of application have different definitions for the term. All the meanings are very similar in concept: In chemistry, the transmission coefficient refers to a chemical reaction overcoming a potential barrier; in optics and telecommunications it is the amplitude of a wave transmitted through a medium or conductor to that of the incident wave; in quantum mechanics it is used to ...
Here the coefficient A is the amplitude, x 0, y 0 is the center, and σ x, σ y are the x and y spreads of the blob. The figure on the right was created using A = 1, x 0 = 0, y 0 = 0, σ x = σ y = 1.
, amplitude, the peak deviation of the function from zero. t {\displaystyle t} , the real independent variable , usually representing time in seconds . ω {\displaystyle \omega } , angular frequency , the rate of change of the function argument in units of radians per second .
It is usually defined as the mean ratio of the signal amplitude or power at the output port to the amplitude or power at the input port. [1] It is often expressed using the logarithmic decibel (dB) units ("dB gain"). [ 4 ]