enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Centripetal force - Wikipedia

    en.wikipedia.org/wiki/Centripetal_force

    The rope example is an example involving a 'pull' force. The centripetal force can also be supplied as a 'push' force, such as in the case where the normal reaction of a wall supplies the centripetal force for a wall of death or a Rotor rider. Newton's idea of a centripetal force corresponds to what is nowadays referred to as a central force.

  3. Kepler problem - Wikipedia

    en.wikipedia.org/wiki/Kepler_problem

    Using classical mechanics, the solution can be expressed as a Kepler orbit using six orbital elements. The Kepler problem is named after Johannes Kepler , who proposed Kepler's laws of planetary motion (which are part of classical mechanics and solved the problem for the orbits of the planets) and investigated the types of forces that would ...

  4. Vector fields in cylindrical and spherical coordinates

    en.wikipedia.org/wiki/Vector_fields_in...

    Vectors are defined in cylindrical coordinates by (ρ, φ, z), where . ρ is the length of the vector projected onto the xy-plane,; φ is the angle between the projection of the vector onto the xy-plane (i.e. ρ) and the positive x-axis (0 ≤ φ < 2π),

  5. Analytical mechanics - Wikipedia

    en.wikipedia.org/wiki/Analytical_mechanics

    A particular solution to Hamilton's equations is called a phase path, a particular curve (q(t),p(t)) subject to the required initial conditions. The set of all phase paths, the general solution to the differential equations, is the phase portrait:

  6. Bertrand's theorem - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_theorem

    The only requirement is that the central force exactly equals the centripetal force, which determines the required angular velocity for a given circular radius. Non-central forces (i.e., those that depend on the angular variables as well as the radius) are ignored here, since they do not produce circular orbits in general.

  7. Lagrange point - Wikipedia

    en.wikipedia.org/wiki/Lagrange_point

    The location of L 1 is the solution to the following equation, gravitation providing the centripetal force: = (+) + where r is the distance of the L 1 point from the smaller object, R is the distance between the two main objects, and M 1 and M 2 are the masses of the large and small object, respectively.

  8. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    Since the sum of all forces is the centripetal force, drawing centripetal force into a free body diagram is not necessary and usually not recommended. Using F net = F c {\displaystyle F_{\text{net}}=F_{c}} , we can draw free body diagrams to list all the forces acting on an object and then set it equal to F c {\displaystyle F_{c}} .

  9. Newton's theorem of revolving orbits - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem_of...

    According to this equation, the second force F 2 (r) is obtained by scaling the first force and changing its argument, as well as by adding inverse-square and inverse-cube central forces. For comparison, Newton's theorem of revolving orbits corresponds to the case a = 1 and b = 0 , so that r 1 = r 2 .