Search results
Results from the WOW.Com Content Network
The derivative of an integrable function can always be defined as a distribution, and symmetry of mixed partial derivatives always holds as an equality of distributions. The use of formal integration by parts to define differentiation of distributions puts the symmetry question back onto the test functions , which are smooth and certainly ...
If the direction of derivative is not repeated, it is called a mixed partial derivative. If all mixed second order partial derivatives are continuous at a point (or on a set), f is termed a C 2 function at that point (or on that set); in this case, the partial derivatives can be exchanged by Clairaut's theorem:
A parabolic partial differential equation is a type of partial differential equation (PDE). Parabolic PDEs are used to describe a wide variety of time-dependent phenomena in, i.a., engineering science, quantum mechanics and financial mathematics. Examples include the heat equation, time-dependent Schrödinger equation and the Black–Scholes ...
If all second-order partial derivatives of exist, then the Hessian matrix of is a square matrix, usually defined and arranged as = []. That is, the entry of the i th row and the j th column is ( H f ) i , j = ∂ 2 f ∂ x i ∂ x j . {\displaystyle (\mathbf {H} _{f})_{i,j}={\frac {\partial ^{2}f}{\partial x_{i}\,\partial x_{j}}}.}
The symmetric derivative at a given point equals the arithmetic mean of the left and right derivatives at that point, if the latter two both exist. [1] [2]: 6 Neither Rolle's theorem nor the mean-value theorem hold for the symmetric derivative; some similar but weaker statements have been proved.
One example of an optimization problem is: Find the shortest curve between two points on a surface, assuming that the curve must also lie on the surface. If the surface is a plane, then the shortest curve is a line. But if the surface is, for example, egg-shaped, then the shortest path is not immediately clear.
Consider a generic (possibly non-Abelian) gauge transformation acting on a component field = =.The main examples in field theory have a compact gauge group and we write the symmetry operator as () = where () is an element of the Lie algebra associated with the Lie group of symmetry transformations, and can be expressed in terms of the hermitian generators of the Lie algebra (i.e. up to a ...
The derivative with respect to a vector as discussed above can be generalized to a derivative with respect to a general multivector, called the multivector derivative. Let F {\displaystyle F} be a multivector-valued function of a multivector.