enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Burst error-correcting code - Wikipedia

    en.wikipedia.org/wiki/Burst_error-correcting_code

    Now, we can think of words as polynomials over , where the individual symbols of a word correspond to the different coefficients of the polynomial. To define a cyclic code, we pick a fixed polynomial, called generator polynomial. The codewords of this cyclic code are all the polynomials that are divisible by this generator polynomial.

  3. Mathematics of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_cyclic...

    The reciprocal of a polynomial generates the same codewords, only bit reversed — that is, if all but the first bits of a codeword under the original polynomial are taken, reversed and used as a new message, the CRC of that message under the reciprocal polynomial equals the reverse of the first bits of the original codeword. But the reciprocal ...

  4. Cyclotomic polynomial - Wikipedia

    en.wikipedia.org/wiki/Cyclotomic_polynomial

    The case of the 105th cyclotomic polynomial is interesting because 105 is the least positive integer that is the product of three distinct odd prime numbers (3×5×7) and this polynomial is the first one that has a coefficient other than 1, 0, or −1: [3]

  5. BCH code - Wikipedia

    en.wikipedia.org/wiki/BCH_code

    A BCH code with = is called a narrow-sense BCH code.; A BCH code with = is called primitive.; The generator polynomial () of a BCH code has coefficients from (). In general, a cyclic code over () with () as the generator polynomial is called a BCH code over ().

  6. Cyclic redundancy check - Wikipedia

    en.wikipedia.org/wiki/Cyclic_redundancy_check

    The polynomial is written in binary as the coefficients; a 3rd-degree polynomial has 4 coefficients (1x 3 + 0x 2 + 1x + 1). In this case, the coefficients are 1, 0, 1 and 1. The result of the calculation is 3 bits long, which is why it is called a 3-bit CRC. However, you need 4 bits to explicitly state the polynomial. Start with the message to ...

  7. Cyclic (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Cyclic_(mathematics)

    Cyclic group, a group generated by a single element; Cyclic homology, an approximation of K-theory used in non-commutative differential geometry; Cyclic module, a module generated by a single element; Cyclic notation, a way of writing permutations; Cyclic number, a number such that cyclic permutations of the digits are successive multiples of ...

  8. Cyclic code - Wikipedia

    en.wikipedia.org/wiki/Cyclic_code

    An (,) quasi-cyclic code is a linear block code such that, for some which is coprime to , the polynomial () is a codeword polynomial whenever () is a codeword polynomial. Here, codeword polynomial is an element of a linear code whose code words are polynomials that are divisible by a polynomial of shorter length called the generator polynomial .

  9. Computation of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Computation_of_cyclic...

    To maximise computation speed, an intermediate remainder can be calculated by first computing the CRC of the message modulo a sparse polynomial which is a multiple of the CRC polynomial. For CRC-32, the polynomial x 123 + x 111 + x 92 + x 84 + x 64 + x 46 + x 23 + 1 has the property that its terms (feedback taps) are at least 8 positions apart.