Search results
Results from the WOW.Com Content Network
For most holonomic sequences, there is no explicit formula for expressing as a function of n. Nevertheless, holonomic sequences play an important role in various areas of mathematics. For example, many special functions have a Taylor series whose sequence of coefficients is holonomic. The use of the recurrence relation allows a fast computation ...
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. It can be used in conjunction with other tools for evaluating sums.
In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. [1] The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions.
Recamán's sequence: 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... "subtract if possible, otherwise add": a(0) = 0; for n > 0, a(n) = a(n − 1) − n if that number is positive and not already in the sequence, otherwise a(n) = a(n − 1) + n, whether or not that number is already in the sequence. A005132: Look-and ...
A (purely) periodic sequence (with period p), or a p-periodic sequence, is a sequence a 1, a 2, a 3, ... satisfying . a n+p = a n. for all values of n. [1] [2] [3] If a sequence is regarded as a function whose domain is the set of natural numbers, then a periodic sequence is simply a special type of periodic function.
Proof without words of the arithmetic progression formulas using a rotated copy of the blocks. An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that ...
Illustration of an exact sequence of groups using Euler diagrams. In mathematics, an exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an abelian category) such that the image of one morphism equals the kernel of the next.
The sequence 0, 3, 8, 15, ... is formed according to the formula n 2 − 1 for the nth term: an explicit definition. Alternatively, an integer sequence may be defined by a property which members of the sequence possess and other integers do not possess. For example, we can determine whether a given integer is a perfect number, (sequence A000396 ...