enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    Fractions: A representation of a non-integer as a ratio of two integers. These include improper fractions as well as mixed numbers . Continued fraction : An expression obtained through an iterative process of representing a number as the sum of its integer part and the reciprocal of another number, then writing this other number as the sum of ...

  3. Integer - Wikipedia

    en.wikipedia.org/wiki/Integer

    Some authors use for non-zero integers, while others use it for non-negative integers, or for {–1,1} (the group of units of ). Additionally, Z p {\displaystyle \mathbb {Z} _{p}} is used to denote either the set of integers modulo p (i.e., the set of congruence classes of integers), or the set of p -adic integers .

  4. Decimal representation - Wikipedia

    en.wikipedia.org/wiki/Decimal_representation

    The decimal expansion of non-negative real number x will end in zeros (or in nines) if, and only if, x is a rational number whose denominator is of the form 2 n 5 m, where m and n are non-negative integers. Proof:

  5. Non-integer base of numeration - Wikipedia

    en.wikipedia.org/wiki/Non-integer_base_of_numeration

    The numbers d i are non-negative integers less than β. This is also known as a β-expansion, a notion introduced by Rényi (1957) and first studied in detail by Parry (1960). Every real number has at least one (possibly infinite) β-expansion. The set of all β-expansions that have a finite representation is a subset of the ring Z[β, β −1].

  6. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    In mathematics, the factorial of a non-negative integer, denoted by !, is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial: ! = () = ()! For example, ! =! = =

  7. Natural number - Wikipedia

    en.wikipedia.org/wiki/Natural_number

    [c] Euclid, for example, defined a unit first and then a number as a multitude of units, thus by his definition, a unit is not a number and there are no unique numbers (e.g., any two units from indefinitely many units is a 2). [17] However, in the definition of perfect number which comes shortly afterward, Euclid treats 1 as a number like any ...

  8. Expression (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Expression_(mathematics)

    A formal expression is a kind of string of symbols, created by the same production rules as standard expressions, however, they are used without regard to the meaning of the expression. In this way, two formal expressions are considered equal only if they are syntactically equal, that is, if they are the exact same expression.

  9. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.