Search results
Results from the WOW.Com Content Network
The pH range is commonly given as zero to 14, but a pH value can be less than 0 for very concentrated strong acids or greater than 14 for very concentrated strong bases. [ 2 ] The pH scale is traceable to a set of standard solutions whose pH is established by international agreement. [ 3 ]
For example, a synthetically prepared amorphous aluminosilicate (Al 2 O 3-SiO 2) was initially measured as having IEP of 4.5 (the electrokinetic behavior of the surface was dominated by surface Si-OH species, thus explaining the relatively low IEP value). [26] Significantly higher IEP values (pH 6 to 8) have been reported for 3Al 2 O 3-2SiO 2 ...
In particular, the pH of a solution can be predicted when the analytical concentration and pK a values of all acids and bases are known; conversely, it is possible to calculate the equilibrium concentration of the acids and bases in solution when the pH is known. These calculations find application in many different areas of chemistry, biology ...
In chemistry and biochemistry, the Henderson–Hasselbalch equation = + ([] []) relates the pH of a chemical solution of a weak acid to the numerical value of the acid dissociation constant, K a, of acid and the ratio of the concentrations, [] [] of the acid and its conjugate base in an equilibrium.
In this case H 0 and H − are equivalent to pH values determined by the buffer equation or Henderson-Hasselbalch equation. However, an H 0 value of −21 (a 25% solution of SbF 5 in HSO 3 F) [5] does not imply a hydrogen ion concentration of 10 21 mol/dm 3: such a "solution" would have a density more than a hundred times greater than a neutron ...
In and of themselves, pH indicators are usually weak acids or weak bases. The general reaction scheme of acidic pH indicators in aqueous solutions can be formulated as: HInd (aq) + H 2 O (l) ⇌ H 3 O + (aq) + Ind − (aq) where, "HInd" is the acidic form and "Ind −" is the conjugate base of the indicator. Vice versa for basic pH indicators ...
In chemistry, acid value (AV, acid number, neutralization number or acidity) is a number used to quantify the acidity of a given chemical substance. It is the quantity of base (usually potassium hydroxide (KOH)), expressed as milligrams of KOH required to neutralize the acidic constituents in 1 gram of a sample.
Addition (or removal) of CO 2 to a solution does not change its alkalinity, since the net reaction produces the same number of equivalents of positively contributing species (H +) as negative contributing species (HCO − 3 and/or CO 2− 3). Adding CO 2 to the solution lowers its pH, but does not affect alkalinity. At all pH values: CO 2 + H 2 ...