Search results
Results from the WOW.Com Content Network
In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain.If is a function from real numbers to real numbers, then is nowhere continuous if for each point there is some > such that for every >, we can find a point such that | | < and | () |.
In mathematics, the Dirichlet function [1] [2] is the indicator function of the set of rational numbers, i.e. () = if x is a rational number and () = if x is not a rational number (i.e. is an irrational number).
It turns out that the Weierstrass function is far from being an isolated example: although it is "pathological", it is also "typical" of continuous functions: In a topological sense: the set of nowhere-differentiable real-valued functions on [0, 1] is comeager in the vector space C ([0, 1]; R ) of all continuous real-valued functions on [0, 1 ...
A classic example of a pathology is the Weierstrass function, a function that is continuous everywhere but differentiable nowhere. [1] The sum of a differentiable function and the Weierstrass function is again continuous but nowhere differentiable; so there are at least as many such functions as differentiable functions.
An example of a Darboux function that is nowhere continuous is the Conway base 13 function. Darboux functions are a quite general class of functions. It turns out that any real-valued function ƒ on the real line can be written as the sum of two Darboux functions. [5]
Similarly, every additive function that is not linear (that is, not of the form for some constant ) is a nowhere continuous function whose restriction to is continuous (such functions are the non-trivial solutions to Cauchy's functional equation). This raises the question: can such a dense subset always be found?
the sinc-function becomes a continuous function on all real numbers. The term removable singularity is used in such cases when (re)defining values of a function to coincide with the appropriate limits make a function continuous at specific points. A more involved construction of continuous functions is the function composition.
It is called the delta function because it is a continuous analogue of the Kronecker delta function, which is usually defined on a discrete domain and takes values 0 and 1. The mathematical rigor of the delta function was disputed until Laurent Schwartz developed the theory of distributions, where it is defined as a linear form acting on functions.