enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Finite field - Wikipedia

    en.wikipedia.org/wiki/Finite_field

    In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements.As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules.

  3. Finite field arithmetic - Wikipedia

    en.wikipedia.org/wiki/Finite_field_arithmetic

    By making a modular multiplicative inverse table for the finite field and doing a lookup. By mapping to a composite field where inversion is simpler, and mapping back. By constructing a special integer (in case of a finite field of a prime order) or a special polynomial (in case of a finite field of a non-prime order) and dividing it by a. [7]

  4. Conway polynomial (finite fields) - Wikipedia

    en.wikipedia.org/wiki/Conway_polynomial_(finite...

    While there is a unique finite field of order p n up to isomorphism, the representation of the field elements depends on the choice of irreducible polynomial. The Conway polynomial is a way of standardizing this choice. The non-zero elements of a finite field F form a cyclic group under multiplication, denoted F *.

  5. Galois theory - Wikipedia

    en.wikipedia.org/wiki/Galois_theory

    Choose a field K and a finite group G. Cayley's theorem says that G is (up to isomorphism) a subgroup of the symmetric group S on the elements of G. Choose indeterminates {x α}, one for each element α of G, and adjoin them to K to get the field F = K({x α}). Contained within F is the field L of symmetric rational functions in the {x α}.

  6. Permutation polynomial - Wikipedia

    en.wikipedia.org/wiki/Permutation_polynomial

    Let F q = GF(q) be the finite field of characteristic p, that is, the field having q elements where q = p e for some prime p.A polynomial f with coefficients in F q (symbolically written as f ∈ F q [x]) is a permutation polynomial of F q if the function from F q to itself defined by () is a permutation of F q.

  7. Primitive polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial...

    In finite field theory, a branch of mathematics, a primitive polynomial is the minimal polynomial of a primitive element of the finite field GF(p m).This means that a polynomial F(X) of degree m with coefficients in GF(p) = Z/pZ is a primitive polynomial if it is monic and has a root α in GF(p m) such that {,,,,, …} is the entire field GF(p m).

  8. Examples of vector spaces - Wikipedia

    en.wikipedia.org/wiki/Examples_of_vector_spaces

    Apart from the trivial case of a zero-dimensional space over any field, a vector space over a field F has a finite number of elements if and only if F is a finite field and the vector space has a finite dimension. Thus we have F q, the unique finite field (up to isomorphism) with q elements. Here q must be a power of a prime (q = p m with p prime).

  9. Local class field theory - Wikipedia

    en.wikipedia.org/wiki/Local_class_field_theory

    In mathematics, local class field theory, introduced by Helmut Hasse, [1] is the study of abelian extensions of local fields; here, "local field" means a field which is complete with respect to an absolute value or a discrete valuation with a finite residue field: hence every local field is isomorphic (as a topological field) to the real numbers R, the complex numbers C, a finite extension of ...