Search results
Results from the WOW.Com Content Network
K: the number of shortest paths to find; p u: a path from s to u; B is a heap data structure containing paths; P: set of shortest paths from s to t; count u: number of shortest paths found to node u; Algorithm: P =empty, count u = 0, for all u in V insert path p s = {s} into B with cost 0 while B is not empty and count t < K:
LeetCode LLC, doing business as LeetCode, is an online platform for coding interview preparation. The platform provides coding and algorithmic problems intended for users to practice coding . [ 1 ] LeetCode has gained popularity among job seekers in the software industry and coding enthusiasts as a resource for technical interviews and coding ...
The closely related problem of finding a minimum-length string which is a superstring of a finite set of strings S = { s 1,s 2,...,s n} is also NP-hard. [2] Several constant factor approximations have been proposed throughout the years, and the current best known algorithm has an approximation factor of 2.475. [3]
Langford pairings are named after C. Dudley Langford, who posed the problem of constructing them in 1958. Langford's problem is the task of finding Langford pairings for a given value of n. [1] The closely related concept of a Skolem sequence [2] is defined in the same way, but instead permutes the sequence 0, 0, 1, 1, ..., n − 1, n − 1.
The number of solutions for this board is either zero or one, depending on whether the vector is a permutation of n / 2 (,) and n / 2 (,) pairs or not. For example, in the first two boards shown above the sequences of vectors would be
Thus, a combinatorial technique for picking test cases like all-pairs testing is a useful cost-benefit compromise that enables a significant reduction in the number of test cases without drastically compromising functional coverage. [5] More rigorously, if we assume that a test case has parameters given in a set {} = {,,...
In the modern era, it is often used as an example problem for various computer programming techniques. The eight queens puzzle is a special case of the more general n queens problem of placing n non-attacking queens on an n×n chessboard. Solutions exist for all natural numbers n with the exception of n = 2 and n = 3.
In number theory and computer science, the partition problem, or number partitioning, [1] is the task of deciding whether a given multiset S of positive integers can be partitioned into two subsets S 1 and S 2 such that the sum of the numbers in S 1 equals the sum of the numbers in S 2.