Search results
Results from the WOW.Com Content Network
Langford pairings are named after C. Dudley Langford, who posed the problem of constructing them in 1958. Langford's problem is the task of finding Langford pairings for a given value of n. [1] The closely related concept of a Skolem sequence [2] is defined in the same way, but instead permutes the sequence 0, 0, 1, 1, ..., n − 1, n − 1.
LeetCode LLC, doing business as LeetCode, is an online platform for coding interview preparation. The platform provides coding and algorithmic problems intended for users to practice coding . [ 1 ] LeetCode has gained popularity among job seekers in the software industry and coding enthusiasts as a resource for technical interviews and coding ...
K: the number of shortest paths to find; p u: a path from s to u; B is a heap data structure containing paths; P: set of shortest paths from s to t; count u: number of shortest paths found to node u; Algorithm: P =empty, count u = 0, for all u in V insert path p s = {s} into B with cost 0 while B is not empty and count t < K:
Thus, a combinatorial technique for picking test cases like all-pairs testing is a useful cost-benefit compromise that enables a significant reduction in the number of test cases without drastically compromising functional coverage. [5] More rigorously, if we assume that a test case has parameters given in a set {} = {,,...
Solution of a travelling salesman problem: the black line shows the shortest possible loop that connects every red dot. In the theory of computational complexity, the travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the ...
Coin values can be modeled by a set of n distinct positive integer values (whole numbers), arranged in increasing order as w 1 through w n.The problem is: given an amount W, also a positive integer, to find a set of non-negative (positive or zero) integers {x 1, x 2, ..., x n}, with each x j representing how often the coin with value w j is used, which minimize the total number of coins f(W)
For the Hamiltonian Path problem, c would consist of a string of vertices where the first vertex is the start of the proposed path and the last is the end. [22] The algorithm will determine if c is a valid Hamiltonian Path in G and if so, accept. To decide this, the algorithm first verifies that all of the vertices in G appear exactly once in c.
The all-pairs shortest path problem finds the shortest paths between every pair of vertices v, v' in the graph. The all-pairs shortest paths problem for unweighted directed graphs was introduced by Shimbel (1953) , who observed that it could be solved by a linear number of matrix multiplications that takes a total time of O ( V 4 ) .