Search results
Results from the WOW.Com Content Network
A sphere enclosed by its axis-aligned minimum bounding box (in 3 dimensions) In geometry, the minimum bounding box or smallest bounding box (also known as the minimum enclosing box or smallest enclosing box) for a point set S in N dimensions is the box with the smallest measure (area, volume, or hypervolume in higher dimensions) within which all the points lie.
A series of geometric shapes enclosed by its minimum bounding rectangle. In computational geometry, the minimum bounding rectangle (MBR), also known as bounding box (BBOX) or envelope, is an expression of the maximum extents of a two-dimensional object (e.g. point, line, polygon) or set of objects within its x-y coordinate system; in other words min(x), max(x), min(y), max(y).
In computational geometry, the smallest enclosing box problem is that of finding the oriented minimum bounding box enclosing a set of points. It is a type of bounding volume. "Smallest" may refer to volume, area, perimeter, etc. of the box. It is sufficient to find the smallest enclosing box for the convex hull of the objects in question. It is ...
If the origin lies on a face of the bounding box, then for some it will happen that =, which is undefined (in IEEE 754 it is represented by NaN). However, implementations of the IEEE 754-2008 minNum and maxNum functions [ 5 ] will treat NaN as a missing value, and when comparing a well-defined value with a NaN they will always return the well ...
Unfortunately, intersection tests become quickly more expensive as the bounding boxes become more sophisticated. A bounding box or minimum bounding box (MBB) is a cuboid, or in 2-D a rectangle, containing the object. In dynamical simulation, bounding boxes are preferred to other shapes of bounding volume such as bounding spheres or cylinders ...
Some instances of the smallest bounding circle. The smallest-circle problem (also known as minimum covering circle problem, bounding circle problem, least bounding circle problem, smallest enclosing circle problem) is a computational geometry problem of computing the smallest circle that contains all of a given set of points in the Euclidean plane.
Bounding volumes such as Oriented Bounding Boxes (OBB), K-DOPs and Convex-hulls offer a tighter approximation of the enclosed shape at the expense of a more elaborate intersection test. Bounding volumes are typically used in the early (pruning) stage of collision detection, so that only objects with overlapping bounding volumes need be compared ...
For example, it is possible to pack 147 rectangles of size (137,95) in a rectangle of size (1600,1230). Packing different rectangles in a rectangle : The problem of packing multiple rectangles of varying widths and heights in an enclosing rectangle of minimum area (but with no boundaries on the enclosing rectangle's width or height) has an ...